
UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG

CENTRO DE CIÊNCIAS COMPUTACIONAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CURSO DE MESTRADO EM ENGENHARIA DE COMPUTAÇÃO

Master’s Dissertation

Resource Profiling in the Training of Graph Neural
Networks

Lucas de Angelo Martins Ribeiro

Master’s Dissertation presented to the Programa de
Pós-Graduação em Computação of the Universi-
dade Federal do Rio Grande - FURG, in partial ful-
fillment of the requirements for the degree: Master
in Computer Engineering

Advisor: Prof. Dr. Nelson Duarte Lopes Filho
Co-advisor: Prof. Dr. Marcelo de Rita Pias

Rio Grande, 2023

Ficha Catalográfica

R484r Ribeiro, Lucas de Angelo Martins.

 Resource profiling in the training of graph neural networks / Lucas

de Angelo Martins Ribeiro. – 2023.

 80 f.

 Dissertação (mestrado) – Universidade Federal do Rio Grande –

FURG, Programa de Pós-Graduação em Computação, Rio

Grande/RS, 2023.

 Orientador: Dr. Nelson Duarte Lopes Filho.

 Coorientador: Dr. Marcelo de Rita Pias.

 1. Redes Neurais de Grafos 2. Processamento de Grafos

3. Gerenciamento de Dados 4. Processamento Paralelo 5. Análise

de Performance de Sistema I. Lopes Filho, Nelson Duarte II. Pias,

Marcelo de Rita III. Título.

CDU 004

Catalogação na Fonte: Bibliotecário José Paulo dos Santos CRB 10/2344

Universidade Federal do Rio Grande
Centro de Ciências Computacionais

Programa de Pós-Graduação em Computação
Curso de Mestrado em Engenharia de Computação

DISSERTAÇÃO DE MESTRADO

Resource Profiling in the Training of Graph Neural Networks

Lucas de Angelo Martins Ribeiro

Banca examinadora:

__
Prof. Dr. Gerson Geraldo Homrich Cavalheiro (UFPEL)

__
Prof. Dr. Leonardo Ramos Emmendorfer (UFSM)

__
Prof. Dr. Marcelo de Gomensoro Malheiros (FURG)

__
Prof. Dr. Marcelo Rita Pias (FURG)
Coorientador

__
Prof. Dr. Nelson Lopes Duarte Filho (FURG)
Orientador

Universidade Federal do Rio Grande
Centro de Ciências Computacionais

Programa de Pós-Graduação em Computação
Curso de Mestrado em Engenharia de Computação

ATA DE SESSÃO DE DEFESA DE DISSERTAÇÃO DE MESTRADO

Ata nº 13/2023

Aos vinte e três dias do mês de outubro de dois mil e vinte e três, às dezessete
horas, ocorreu a sessão de Defesa de Dissertação de Mestrado de Lucas de
Angelo Martins Ribeiro, que apresentou a dissertação intitulada “Resource
Profiling in the Training of Graph Neural Networks”, realizada sob a
orientação do Prof. Dr. Nelson Lopes Duarte Filho e coorientação do Prof. Dr.
Marcelo Rita Pias. A banca examinadora foi constituída pelos Prof. Dr. Gerson
Geraldo Homrich Cavalheiro (UFPEL), Prof. Dr. Leonardo Ramos Emmendorfer
(UFSM) e Prof. Dr. Marcelo de Gomensoro Malheiros (FURG), sob a presidência
do orientador. Após a apresentação do trabalho, a banca arguiu a candidato e,
a seguir, deliberou pela
 (X) aprovação da Dissertação
 () aprovação da Dissertação, sugerindo modificações no texto
 () reprovação da Dissertação

Rio Grande, 23 de outubro de 2023.

__
Prof. Dr. Gerson Geraldo Homrich Cavalheiro (participação remota)

Prof. Dr. Leonardo Ramos Emmendorfer (participação remota)

__
Prof. Dr. Marcelo de Gomensoro Malheiros (participação remota)

Prof. Dr. Marcelo Rita Pias (participação remota) - Coorientador

__
Prof. Dr. Nelson Lopes Duarte Filho (participação remota) - Orientador

ACKNOWLEDGEMENTS

First of all, I thank God for the strength and courage granted to me every day during
this long journey, which is just beginning. I thank my parents Marize and Matusalem for
all the values, teachings, support, and sacrifices they have dedicated to me throughout my
life. None of this would have been possible without you.

Next, I express my gratitude to my family members, Juliana, Nil, Fabiano, Camila,
Cecı́lia, Otávio and Matteo, for their unconditional love and support, and for being my
home even from afar.

It has been many years away from you all, and yet you have always been present.
I also want to express my gratitude to the friends, colleagues, and teachers who have

been part of this journey and have made the days brighter, making the journey worthwhile.
Furthermore, I extend a special thanks to the professors who are part of the examining
committee for their willingness to contribute and engage in this study. Finally, I would
also like to thank the participating members and colleagues of the Text of Things (ToT)
project, who have been instrumental in my intellectual and professional growth over these
past years.

“But they that wait upon the LORD shall renew their strength;
they shall mount up with wings as eagles;

they shall run, and not be weary;
and they shall walk, and not faint.”

ISAIAH 40:31

ABSTRACT

RIBEIRO, Lucas de Angelo Martins. Resource Profiling in the Training of Graph
Neural Networks. 2023. 81 p. Thesis (Master) – Programa de Pós-Graduação em
Computação. Universidade Federal do Rio Grande - FURG, Rio Grande.

Graph processing can be applied in various areas of society, technology, industry,
and science to extract knowledge from real-world data. With the growth in the under-
standing and application of Artificial Intelligence, derived fields have emerged to explore
the application of graphs using intelligent mechanisms, such as recommendation systems,
social networks, among others. In this context, numerous models and frameworks for
Graph Neural Networks have emerged, expanding the capabilities of these mechanisms.
Despite significant advances in the study of Graph Neural Networks aimed at achieving
better accuracy in models, the analysis of resources for processing these models is still an
area that can be further explored to gain a deeper understanding of these systems from an
architectural and execution environment perspective. In this work, a quantitative analysis
of hardware resource consumption during the training phase of graph neural networks
was conducted, taking into account potential benefits from using GPU accelerators when
evaluating datasets of different compositions. The GCN and GraphSAGE models were
used as the subject of study in this work, with implementations in the PyTorch Geometric
framework. As a result, a significant improvement in the processing time of these models
was observed when GPU accelerators were used, along with significant variations in
the points of high resource utilization. It was also noted that datasets with different
structural compositions (e.g., the number of edges and average node degree) can also
exhibit significant variations in results.

Keywords: Graph Neural Networks, Graph Processing, Data management, Parallel Pro-
cessing, System performance analysis.

RESUMO

RIBEIRO, Lucas de Angelo Martins. Análise do Consumo de Recursos no Treina-
mento de Redes Neurais de Grafos. 2023. 81 f. Dissertação (Mestrado) – Programa
de Pós-Graduação em Computação. Universidade Federal do Rio Grande - FURG, Rio
Grande.

O processamento de grafos podem ser aplicados em diversas áreas da sociedade,
tecnologia, indústria e ciência de modos a extrair conhecimento de dados do mundo
real. Com o crescimento do entendimento e da aplicação de Inteligência Artifical,
áreas derivadas surgiram com o intuito de explorar a aplicação de grafos a partir de
mecanismos inteligentes, como sistemas de recomendação, redes sociais, entre outros.
Neste contexto, inúmeros modelos e frameworks para uso de redes neurais de grafos
emergiram, expandindo a atuação destes mecanismos. Apesar do grande avanço nos
estudos das redes neurais de grafos visando obter melhores valores de precisão nos
modelos, a análise de recursos para o processamento destes modelos ainda é um campo
que pode ser mais explorado, de modo a se obter maior entendimento destes sistemas
à partir de uma perspectiva de arquitetura e ambiente de execução. Neste trabalho, foi
realizada uma análise quantitativa do consumo de recursos de hardware durante a fase
de treinamento de redes neurais para grafos, levando-se em conta possı́veis ganhos com
o uso de aceleradores em GPU, quando avaliados datasets de constituições diferentes.
Os modelos GCN e GraphSAGE foram utilizados como objeto de estudo neste trabalho,
com implementações no framework PyTorch Geometric. Como resultado, observou-se
um ganho significativo no tempo de processamento destes modelos quando utilizados
aceleradores em GPU, além de variações significativas nos pontos de alta utilização dos
recursos base. Notou-se também que, datasets de diferentes constituições estruturais (por
exemplo número de arestas e grau médio dos nós) podem apresentar também grandes
variações nos resultados.

Palavras-chave: Redes Neurais de Grafos, Processamento de Grafos, Gerenciamento de
Dados, Processamento Paralelo, Análise de Performance de Sistema.

LIST OF ILLUSTRATIONS

1 Pipeline for a graph application with both OLTP and OLAP. 16
2 Representing documents in a graph model. 21

3 Node Classification with GraphSAGE. 25
4 Graph Classification Algorithm. 26
5 Graphical representation of missing link prediction. Dashed lines de-

pict possible edges . 27

6 General Purpose Analytical Engines GitHub Stars. 41
7 ETL Graph Engines GitHub Stars. 42
8 GNN Engines GitHub Stars. 43
9 The USE Method. 45
10 Representational Diagram of the used models (GCN and GraphSage). 47
11 Amazon Computers (or AmazonCoBuy) Representation. 48
12 Visualisation of the Amazon Computers graph in GCN. 49
13 Visualisation of the Amazon Computers graph in GraphSAGE. 49
14 Visualisation of the Citeseer dataset. 50
15 Visualisation of the CiteSeer dataset in GCN. 50
16 Visualisation of the CiteSeer dataset in GraphSAGE. 51
17 Visualisation of the CoAuthors (CS) dataset in GCN. 51
18 Visualisation of the CoAuthors (CS) dataset in GraphSAGE. 52

19 Training GCN with Amazon Computers - CPU only. 55
20 Training GCN with Amazon Computers - GPU Accelerated. 56
21 Training GCN with CiteSeer - CPU only. 57
22 Training GCN with CiteSeer - GPU Accelerated. 58
23 Training GCN with CoAuthors CS - CPU only. 59
24 Training GCN with CoAuthors CS - GPU Accelerated. 60
25 Training GraphSAGE with Amazon Computers (CPU only) resources. 62
26 Training GraphSAGE with Amazon Computers - GPU Accelerated. . 63
27 Training GraphSAGE with CiteSeer - CPU only. 64
28 Training GraphSAGE with CiteSeer - GPU Accelerated. 65
29 Training GraphSAGE with CoAuthors CS - CPU only. 66
30 Training GraphSAGE with CoAuthors CS - GPU Accelerated. 67

LIST OF TABLES

1 GNN advantages and disadvantages. 31
2 Benchmark Studies and Open Gaps. 39

3 Frameworks Stage Support and Base Tools. 44
4 GNN Frameworks Features Support 44

5 Aggregated of Extracted Results - Resource Consumption in Training. 69

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

C&A Construction and Assembly

ConvGNN Convolutional Graph Neural Network

CPU Central Processing Unit

ETL Extract, Transform and Load

GAE Graph Autoencoder

GNNs Graph Neural Network

GPU Graphic Processing Unit

HUP High Utilisation Point

ISO International Organization for Standardization

LED Linked Engineering Documents

O&G Oil and Gas

OLAP Online Analytical Processing

OLTP Online Transactional Processing

RecGNN Recurrent Graph Neural Network

SAGE Sample and Aggregate

SQL Structured Query Language

STGNN Spatial-Temporal Graph Neural Network

TABLE OF CONTENTS

1 Introduction 14
1.1 Graph Neural Networks . 15
1.2 Graph Pipeline . 15
1.2.1 Bottlenecks . 18
1.2.2 Frameworks . 19
1.3 The Case Study: Graphs for Processing Linked Engineering Documents 20
1.3.1 Previous Results . 20
1.3.2 Problems Encountered . 21
1.4 Research Questions and Objectives . 22
1.4.1 Specific Objectives . 23

2 Background and Related Work 24
2.1 Definitions . 24
2.1.1 Graph Neural Networks . 24
2.1.2 Node Classification . 25
2.1.3 Graph Classification . 25
2.1.4 Link Prediction . 25
2.1.5 Recurrent Graph Neural Networks . 25
2.1.6 Graph Convolutional Neural Networks 27
2.1.7 Graph Autoencoders . 28
2.1.8 Spatial-Temporal Graph Neural Networks 29
2.1.9 Data Layout . 32
2.1.10 Memory Access Pattern . 33
2.1.11 Graph Algorithms . 34
2.1.12 Graph Processing . 34
2.2 The Scalability Challenge . 35
2.2.1 Graph Processing on GPUs . 36
2.2.2 Scalability on GPUs . 36
2.2.3 Scaling Neural Networks . 37
2.3 Related Work . 37

3 Evaluation Methodology 40
3.1 Frameworks Selection and Classification 41
3.2 Profiling Resources . 43
3.3 Creating the Test Cases . 45
3.3.1 Execution Environment . 46
3.3.2 Models . 46

3.3.3 Datasets . 48

4 Results 53
4.1 GCN . 53
4.2 GraphSAGE . 60
4.3 Discussion . 67

5 Conclusion and Future Work 70

Bibliography 73

APPENDIX

A GraphLED: A graph-based approach to process and visualise linked engi-
neering documents 81

1 Introduction

In the last few decades, there has been an exponential increase in real-world data being
generated and made available on the World Wide Web [22]. With this sharp growth, there
has also been an explosion in the number of areas and sub-areas in computing dedicated
to data processing. These areas extensively explore different techniques [44], algorithms,
and mechanisms capable of extracting, processing, acquiring knowledge, and generating
insights to cause a new industrial, technological, and social revolution. Although known
in mathematical fields for centuries, graph processing in computer science now refers to
analysing, manipulating, and processing large-scale graphs (which can reach billions of
nodes and edges). Furthermore, with the advent of Artificial Intelligence (AI), this field
of study can be divided into two categories: classical graph processing, which involves
calculating inherent graph properties using traditional mathematical and computational
tools, and intelligent graph processing, which employs tools and methodologies from AI
to explore and make predictions.

Among those techniques, graph processing can be applied in several areas of society,
technology, industry, and science to extract knowledge from real-world data. For example,
in the field of social sciences, graph processing can be used in social network analysis, in-
volving the study of the structure and dynamics of social relationships and their influence
on individual and collective behaviour. By using algorithms in existing graphs (graph al-
gorithms), researchers around the world can analyse large social networks to identify key
influencers [2], community detection [58], and rumours spread [63]. This information can
inform and predict social media’s political, cultural, or understanding impact on society.

Other areas have embraced graphs to extract knowledge using real-world data. For
example, in AI applications, graph processing can be used to make personalised recom-
mendations, such as friend suggestions on social networks or product suggestions in on-
line stores, and countless other applications that have been applied in recent years. Graph
processing is also used to detect fraud in financial systems, identify anomalous behaviour
patterns, synthesise network meshes in large corporations, and improve cyber security.
In the industry, graph processing has also been explored to improve the efficiency and
effectiveness of its business processes. For example, in logistics industries, graph pro-

15

cessing can optimise delivery routes, ensuring that deliveries arrive at their destinations as
quickly as possible. Additionally, in telecommunications industries, graph processing can
improve service quality, quickly identifying problems in complex networks and resolving
them before affecting customer service quality. However, despite the great potential in
the field and the numerous studies developed recently, there are still many challenges and
bottlenecks in the graph processing environments.

1.1 Graph Neural Networks

Artificial Intelligence is the field of study of intelligent agents, that is, machines ca-
pable of taking actions that maximise the chances of success in a given environment by
“imitating” human cognitive activities (such as learning a new language or playing chess)
[57]. Deep Learning (or Deep Machine Learning) can be considered a sub-field of Artifi-
cial Intelligence dedicated to study artificial neural networks, which can be superficially
regarded as abstractions of human neurons and their interconnections [57]. Neural net-
works can be trained to perform numerous tasks, such as pattern detection and relationship
identification in data. In this context, Graph Neural Networks [29, 61, 46] (or GNN) are
present as a sub-set of Neural Networks, specialising in the processing and learning from
structured data in the form of graphs.

Among the most commonly explored tasks in neural network research, natural lan-
guage processing, image processing, video processing, and audio processing (data repre-
sented in grid-like formats such as sequences, matrices, or vectors) are mentioned. Graph
Neural Networks can be applied to arbitrary graph-structured data, allowing the networks
to capture complex dependencies and patterns within discrete entities and the relation
between them [8]. Despite being a subject of study initiated in the late 20th century in
computer science, it was only after 2017 that many studies and applications (for example,
[34, 16, 40]) for Graph Neural Networks emerged, solving complex real-world problems.
However, classical computing systems (outside the scope of AI) had been exploring the
concept and applicability of graphs long before that.

1.2 Graph Pipeline

Graphs can be used in numerous different ways in an information system pipeline.
However, these ways are generally grouped into two distinct stages in the architecture of
an application: Online Transaction Processing (or OLTP) and Online Analytical Process-
ing (or OLAP) [15]. The first stage consists of using the data during the real-time process-
ing of the application, supporting the user as the end of the entire architecture (OLTP).
The second stage involves using the data to obtain insights, reports, and business analytics
focused on a particular area (OLAP). Although the concept is applied in Artificial Intelli-

16

gence applications, Business Analytics, and large-scale systems and is generally applied
to microservices as a whole, the same concept is applied to graph-oriented systems.

For example, in a social network (represented as a graph, G), we can define a user as
a node in this graph and each relationship or connection between users as edges. In this
system, whenever a user A “accepts” the connection requested by a user B, a new edge
is formed (e.g., (A) → (B)), and new subgraphs can connect at this moment, resulting in
new recommendations for connections between users surrounding this graph. Thus, the
processing needs to be done in real time, and as a consequence, the entire social network
needs an architecture focused on processing these new connections and their impacts on
the network as a whole; this is the OLTP stage. On the other hand, this system could also
be used by a team of researchers to study, for example, key people in the system, such
as those most connected or more likely to convert a sale from an advertisement on the
system. This processing can be done in real-time, and this calculus could be done using
algorithms or techniques that are optional for the base functioning of the application; this
is the OLAP stage.

Each of these system stages has its challenges and bottlenecks. For example, the OLTP
stage needs to support a large load of creating nodes and edges in the system so that the
application continues to run smoothly for the user. However, the OLAP stage needs to be
able to apply algorithms (such as centrality calculations) on a very large subgraph or to be
able to predict or anticipate behaviours in this network from previous information about
the network.

Figure 1: Pipeline for a graph application with both OLTP and OLAP.

Source: The author(s)

For this scenario, we modelled in Figure 1 an architecture capable of representing

17

an application for both OLTP and OLAP stages. In this architecture, steps (1), (2), and
(3) are defined as part of the OLTP phase, while steps (4), (5), and (6) are part of the
OLAP phase. This example formulates a fictional scenario of a complete pipeline for
using graphs in a corporate or scientific environment:

1. Source Application: This is the input of real-world data into the application. Based
on user interaction, such as a “connection” in a social network or uploading an op-
erational document file. This stage can be presented as a Web application or system
that provides the user with an interactive environment for performing a desired task.

2. System Modelling This data is processed in this stage. This stage may consist
of a dozen backend services for tasks such as pre-processing and data modelling
through queries. In this stage, the most common transactions are of the Write type
and should have the lowest latency possible to sustain the entire application. The
services implemented in this scope (System Engine) can be written through Restful
APIs using Python, Java, C, or other languages. A database management system
capable of storing the input data that has been processed and modelled is also usu-
ally present in this stage. In our example system, Neo4j or Neptune can be good
alternatives.

3. Data Migration I (ETL): This stage consists of the system’s ability to read the
previously stored data so that this data can be used to feed the other part of the
system through extraction, transformation, and loading operations. In other words,
this module must be able to read a large amount of data from a source and take it to
another source according to business needs.

4. Data Migration II (ETL): After reading the data modelled in the previous stage,
the system must be able to store this data in an environment suitable for analysis.
Since these sources are usually diverse, as well as the data format, this process can
be stored in either a Data Warehouse or Data Lake.

5. Data Processing and Analytics: A new processing module is inserted in this stage.
In this module, the system should be able to provide data analysts with the appropri-
ate tools for performing their analyses and/or obtaining insights that will feed strate-
gic decisions. Artificial Intelligence systems (Machine Learning, Deep Learning,
and others) are common in this module. In the scenario where the data is focused
on using graphs, it is common to use Graph Neural Networks to predict behaviours
and use tools for visual analysis and graph algorithms.

6. Presentation: This is the phase of using the insights and analysis obtained through
graphs. They are usually presented with reports in graphs, tables, or any other way,
or even with a second Web application.

18

The hypothetical architecture presented in Figure 1 can represent an application for
both OLTP and OLAP. However, these steps shown in each of the stages can be expanded
into sub-modules depending on numerous factors such as complexity of the main appli-
cation (OLTP), types of analyses and insights extracted (OLAP), quantity and quality of
input data (both OLTP and OLAP) among other numerous factors. Each of these modules
has its own set of inherent challenges and bottlenecks, which can increase the complexity
of the application in various ways or even make it unfeasible.

1.2.1 Bottlenecks

The state-of-the-art concerning these challenges and bottlenecks constantly evolves,
with new developments and innovations being made regularly. Some common challenges
found in the literature are:

1. Scalability: Graph-modeled databases can reach the scale of billions of nodes and
edges; however, computer systems still have limitations such as limited bandwidth,
processing power, and memory. This challenge can be addressed by developing
distributed graph processing systems that efficiently handle large-scale graphs (hor-
izontal scalability). Other techniques can be addressed by partitioning the graphs
into small pieces, parallelising the processing of the structures or using more perfor-
mant data structures (vertical scalability). Both horizontal and vertical scalabilities
are subjects of study at this point.

2. Data quality and integration: Depending on the data quality, inconsistencies in
the data can make it difficult to use graph processing on any part of the pipeline.
Addressing this challenge involves improving data cleaning, normalisation, and in-
tegration methods to improve data quality and consistency. This can help prevent
inaccuracies and errors in graph processing and analysis.

3. Real-time processing: To deal with this challenge, researchers are developing al-
gorithms and systems that can process graph data in real-time, with low latency.
This requires efficient data structures, algorithms, and hardware acceleration tech-
nologies like GPUs.

4. Model interpretability: Related in helping in better understanding the decisions
made by the graph model, improving its transparency and accountability. This
challenge involves developing interpretable graph neural network models that can
provide insights into how the model makes predictions.

5. Model generalisation: This challenge is being addressed by developing graph neu-
ral networks that can generalise to unseen graph data and handle noisy or incom-
plete data. This is achieved through Graph Convolutional Networks, Graph Atten-
tion Networks and other types of GNN.

19

6. Visualisation: Visualisation is a big challenge that can be encountered in graph data
analysis applications. Depending on the purpose of the study, the graph structure
can become large enough that pure visualisation of these structures is not feasi-
ble, requiring techniques to improve this aspect, such as partitioning the graph into
subgraph structures or using other data formats derived from graphs.

The OLTP stage constantly faces the challenges (1), (2), and (3) in the development of
a graph application, while the OLAP stage is often facing (4), (5), and (6). Besides that,
items (1) and (2) will often be present in both stages.

1.2.2 Frameworks

In response to these challenges and the emergence of Big Data concepts, large-scale
parallel graph processing frameworks have arisen – for example, Pregel [48], GraphX
[80] and PowerGraph [28] – to simplify the design, implementation, and adaptation of
graph algorithms at scale, as well as to explore failure tolerance strategies in large systems
[80]. According to Xin et al. [80], data-parallel systems, such as MapReduce [20], and
Spark [85], are highly recommended for building graphs and processing extensive data.
However, representing graph algorithms and computation becomes challenging in these
systems, causing excessive data operations.

In his work, Guo et al. [33] presented a benchmarking of the leading graph processing
platforms, more popular at the time of the study: Hadoop, YARN [71], Giraph [35],
GraphLab, Stratosphere and Neo4j [60]. In Guo et al. [32], the authors report the main
challenges encountered in the study [33], and raise important questions regarding the
methodology for evaluating and validating graph processing platforms. These include
assessing processing from the perspectives of a diversity of input datasets, the complexity
of algorithms, and the peculiarities of each platform, as well as expanding the scope
and importance of metrics applied to the results obtained. In the same work, four major
challenges in result measurement methodologies for graph processing are presented:

• Evaluation process: the rules of the game must be well defined for a fair evaluation.
This means that consideration must be given to the format of data supported by
platforms, and processing flows should also be taken into account, as multi-user
processing has become common in current applications, resulting in well-specific
sub-atomic operations.

• Selection and design of performance metrics: execution time, resource utilisation,
scalability, system overhead, cost, and energy consumption should be considered.

• Selection of the dataset: the work prioritised datasets with a significant amount of
data with great internal variability that are easily transformed into different scales
in similar formats, reducing the discrepancy of results.

20

• Algorithms evaluated: another challenge found in this work was the choice of al-
gorithms that would be considered, where the authors grouped these algorithms by
classes based on the purpose of the algorithm and its context.

In addition, the authors present three other practical challenges: (i) scalability in data
selection and evaluation processes, (ii) portability between platforms, and (iii) presenta-
tion of results, pointing out the difficulties encountered in the benchmarking process of
data processing in these platforms or tools that have their intrinsic differences. However,
most of the frameworks and tools presented in such studies are only related to the ETL
(Extraction, Transform and Load) processes in the graph pipeline and hence need the
capability of performing training and modelling of GNN.

1.3 The Case Study: Graphs for Processing Linked Engineering
Documents

The crucial role that information systems play in managing large companies is undeni-
able [49]. Documents, which have always been essential in communication, management,
and contracting processes [6], are now undergoing perhaps their biggest revolution, fol-
lowing the technological transformations that have a significant impact on organizations
[21]. Among the challenges found, one can cite the difficulty in indexing and search-
ing for data from unstructured and semi-structured documents, data redundancy [68], the
choice of the technique to be used to locate and relate data from one or more documents
[59] [36], and also the difficulty of processing data at scale.

Lafetá et al. [43] pointed out the vulnerabilities faced by organizations in the Oil
and Gas (O&G) sector, such as market, culture and technology issues. So, organizations
need to adapt quickly to remain competitive in this market. This also highlights the need
for technological solutions that ease project management processes and complexity. The
study by Aragao [7] presented the use of graphs as a promising approach in the search
for relationships between different documents and data insights with a high degree of
relationships. Figure 2 shows an example of how the same document can be represented
in graph format despite differences in structural configuration.

The work described in da Silva et al. [19] aimed to develop a computer system capable
of visualizing, evaluating and manipulating Construction & Assembly, Manufacturing,
and Supply data in the O&G industry, known as Databooks.

1.3.1 Previous Results

The first results at da Silva et al. [19] led us to a prototype tool for graph visualization
of Databooks (named GraphLED). The results obtained and the validation and feedback
from stakeholders were positive and showed great potential for expanding the scope and
exploring new features. Currently, the proposed application is undergoing continuous

21

Figure 2: Representing documents in a graph model.

Primeiro	Documento Segundo	Documento

Título

CarimboImagem

Tabela

Título

CarimboGráfico

Tabela Parágrafo

Source: The author(s)

testing and implementing improvement processes, and a prototype version is in use by
stakeholders of the system who will provide data and evaluations regarding its behaviour
in a corporate environment. Fueled by iteration cycles, the application evolves through the
process of separating responsibilities – with the implementation of microservice-oriented
components – giving rise to a more robust and scalable version, which has the potential
for extending its functionalities. Despite being in a controlled stage, it has been possible
to observe the benefits of using this architecture as reported in Newman [54] and Martin
[50], such as ease of resource management (enabling high scalability in the future) and
easy maintainability, since components have a reduced scope.

The final business objective is to provide analysis and insights into a highly compet-
itive sector and, in a current scenario, an incentive for technological solutions to support
administrative, executive and decision-making areas. However, some pipeline steps have
been simplified in this tool to reduce the application’s time-to-market. In this context,
the application can perform the entire OLTP stage, but the present analysis was carried
out with a Neo4j database plugin, capable of running algorithms on graphs and extracting
analyses (OLAP).

1.3.2 Problems Encountered

Despite delivering a prototype version of the tool in previous works, some difficulties
were found in the architecture. We grouped both the OLTP and OLAP difficulties in the
application development.

1. The graph model used was developed after a pre-analysis of the engineering team
(co-authors in da Silva et al. [19]) and also by technical professionals with prior
knowledge of the documents, which in some way assisted in the data modelling.
This means that new types of documents or documents not previously identified
could not be automatically identified and processed by the system;

22

2. Related to the previous item, the graph modelling and node detection are rule-based
(SQL-like based) and not self-detected, which means that out-of-pattern documents
may present some processing failures. It is enough for an OLTP system, but it could
be improved;

3. The processing of graph algorithms for analysis (see item 5) is implemented with a
Neo4j Plugin and is highly dependent on the processing capacity of the Neo4j [60]
database and plugins;

4. With the increase in the number of nodes and edges in the graphs, processing bot-
tlenecks and memory usage are noticeably present in both frontend visualization
and backend processing;

5. The Neo4j processing module demonstrates not keeping up with the scalability ca-
pabilities of the rest of the system since it cannot scale horizontally.

Even though some of these problems are related to the absence of a complete OLTP
and OLAP architecture for the segmentation of each of the necessary stages for building
a graph-based application, scalability is the common point that can interfere with the
progress of the entire graph project.

Problems (1) and (2) can be addressed with the implementation of a Business Engine
capable of making predictions and, in some way, complementing the System Engine.
Problems (3), (4) and (5) show indications of how the absence of a dedicated ETL mod-
ule and separation of the responsibility of a Business Engine can impact a graph system.
However, despite many studies on the scalability of frameworks dedicated to the ETL
phase, more is needed to address the scalability problem in a Business Engine module
capable of making predictions using Graph Neural Networks. Many studies relate and
evaluate the performance of systems in executing graph algorithms on large datasets (see
Section 1.2.2), but there is little in the literature about how the choice of the correct frame-
work, as well as the variability of its execution environment, can impact the application’s
performance.

1.4 Research Questions and Objectives

To a better understand of graph applications and address problems (3), (4), and (5)
(Section 1.3.2), a study of these tools, as well as their techniques and related algorithms
in a distributed processing scenario, is proposed in the Chapter 2. Some questions need
to be addressed:

• (RQ1) What is the resource footprint in running Graph Neural Networks in an ac-
celerated environment?

23

• (RQ2) What is the impact of choosing different well-known Models and Datasets
from the literature, considering variable node degrees and graph structures?

The present work explores these two questions in more detail in the following chap-
ters.

1.4.1 Specific Objectives

• S01 - Study the different types of frameworks used for graph analysis, with
support for the prediction.

Different frameworks approach scalability in graphs in different ways. Some may
focus on vertical scalability, optimising memory access and structures representing
the data. Others may specialise in distributed processing to achieve greater hori-
zontal parallelism. This study will consider tools capable of training Graph Neural
Networks in a relevant environment and classify them based on their scalability
approach characteristics [RQ1].

• S02 - Investigate possible performance gains in GNN model training according
to changes in the execution environment.

This work seeks to evaluate possible performance gains from changes in their ex-
ecution environment. For example, what could be the system impact if we rely on
GPUs instead of CPUs [RQ1]?

• S03 - Investigate possible performance gains according to Datasets and GNN
Models changes.

In the same context, we seek to establish a relationship between the structures in
the system (e.g., more dense datasets or complex models) that could change the
scalability for training GNN [RQ2].

2 Background and Related Work

This chapter first introduces the main definitions of graph processing. Then, we also
present some relevant concepts and studies in Graph Processing and its related topics. At
least we mention the design concept considerations found in these studies and how they
may relate.

2.1 Definitions

In this study, a graph is defined as a mathematical structure consisting of a set of nodes
(or vertices), V , and a set of edges, E, connecting pairs of nodes. The mathematical
definition of a graph can be represented as a tuple G = (V,E), where:

• V is a finite non-empty set of nodes;

• E is a set of pairs of nodes from V, representing the edges of the graph;

• X = {x1, x2, . . . , xn} is the node features, and;

• A is the adjacency matrix of the graph.

2.1.1 Graph Neural Networks

As mentioned, GNN are Neural Networks applied to arbitrary graph-structured data,
allowing the networks to capture complex dependencies and patterns within discrete en-
tities and the relation between them [8]. They are commonly mentioned in the litera-
ture for performing tasks such as Node Classification, Graph Classification, Link Predic-
tion, Anomaly Detection and Community Detection. The literature presents a large set
of GNN, often grouped inconsistently and confusingly. In this work, the taxonomy of
Wu et al. [79] was used, where GNN are grouped into four categories: Recurrent Graph
Neural Networks (RecGNN), Graph Convolutional Neural Networks (ConvGNN), Graph
Autoencoders (GAEs), and Spatial-Temporal Graph Neural Networks (STGNN). In the
study by Wu et al. [79], some applications of graph neural networks were presented; in
addition to a thorough review of the terms, some considerations were made about future
research directions in this area.

25

2.1.2 Node Classification

Node classification involves assigning a ground truth category to a node from a set
of categories. In other words, it aims to find the correct label for a node based on the
labels of its neighbours and nearby structures; some examples of models used for this task
are GraphSAGE [34] and Graph Attention Networks [72]. In the Figure 3, the example
presented by Hamilton et al. [34] shows how it is possible to use the local neighbourhood
data to predict the node label.

Figure 3: Node Classification with GraphSAGE.

Source: Hamilton et al. [34].

2.1.3 Graph Classification

Graph Classification involves classifying the entire graph based on some structural
property. An example of this task is the classification of molecular arrangements, where
it is possible to predict the effectiveness of a molecule in combating a harmful agent [67].

2.1.4 Link Prediction

Link prediction involves estimating a relationship between two nodes based on ex-
isting attributes and edges. Examples mentioned in the state-of-art include predicting
relationships between two users in social networks, actors in an event (such as an e-mail),
and more [26]. Figure 5 shows us how the task of link prediction (or edge prediction) can
be used to predict relationships between entities, objects, or even people.

2.1.5 Recurrent Graph Neural Networks

Recurrent Graph Neural Networks (RecGNN) are the first proposed type of GNN that
uses recurrence as a fundamental mechanism for processing structured data in graphs
[61]; they were first proposed at Biochemical domain studies [61] [25] [46]. The first
characteristic of RecGNN is maintaining their state throughout iterations in graph pro-
cessing, allowing the model to capture temporal dependencies in the graph structure. In

26

Figure 4: Graph Classification Algorithm.

Source: Memgraph [53].

RecGNN, each node in the graph has its hidden state updated at each iteration based on its
features and the features of its neighbouring nodes. This allows RecGNN to capture both
local and global dependencies in the graph structure, making them suitable for tasks that
require analysis of evolving graph data, such as node classification and link prediction.
In short, RecGNN provide a flexible and powerful framework for processing applications
that require analysis of temporal dependencies. The graph encoding function is defined
as:

h0
v = fenc(xv)

• fenc is a non-linear function that maps the node features xv to a hidden representa-
tion h0

v.

The RecGNN take the graph representation as input and produce a new representation
for each node at each time step. The computation at each time step t can be defined as:

ht
v = σ

 ∑
u∈N (v)

Wuu′ht−1
u +Wvv′h

t−1
v + b


• N (v) is the set of neighbors of node v;

• Wuu′ and Wvv′ are the weight matrices for the edges;

• σ is an activation function (e.g., Sigmoid, Maxout or ReLU);

• b is the bias term;

27

Figure 5: Graphical representation of missing link prediction. Dashed lines depict possi-
ble edges

Source: Ahmad et al. [3].

Finally, the output of the RecGNN can be computed as:

yv = fout(h
T
v)

• fout is another non-linear function that maps the final node representation hT
v to the

output yv.

2.1.6 Graph Convolutional Neural Networks

Graph Convolutional Neural Networks (ConvGNN) are GNN that apply convolutional
filters to the graph structure [12]. They are designed to process graph-structured data, ag-
gregating information from neighbouring nodes to make predictions or perform node and
graph classification tasks. They have several advantages compared to other graph neural
networks. For example, compared to RecGNN, ConvGNN have a simpler architecture.
They do not require a recurrence to process graph-structured data, which makes them
easier to train and less computationally expensive [77].

However, one of the main limitations of ConvGNN is the difficulty of capturing long-
range dependencies in large graphs. ConvGNN aggregate information from neighbouring
nodes, which may not be sufficient to capture complex relationships in the graph. In con-
trast, RecGNN and STGNN can maintain information from previous iterations, making
them more suitable for capturing deeper dependencies. Another limitation of ConvGNN
is the lack of ability to capture non-linear relationships in the graph structure, which is
explained by the use of linear convolution filters to the graph structure. The graph convo-
lution operation at each node v can be defined as:

28

h′
v = σ

 ∑
u∈N (v)

1√
dudv

Whu


• N (v) is the set of neighbors of node v;

• W is the weight matrix;

• σ is an activation function (e.g., Sigmoid, Maxout or ReLU);

• du and dv are the degrees of nodes u and v, respectively, and;

• h′
v is the updated node representation.

The ConvGNN can be trained end-to-end using supervised learning to minimise the
prediction error between the true labels and the ConvGNN predictions. Wu et al. [79]
presents as examples of this group of GNN, the models: GCN [42], GraphSage [34],
FastGCN [17], StoGCN [16], and Clust-GCN [18]. The same work reports differences
between Spectral and Spatial Convolutional models. Additionally, it is mentioned that
some types of Graph Attention Networks can fit into the ConvGNN model, while others
cannot due to variations in the capturing weights (attention) from neighbouring nodes.

2.1.7 Graph Autoencoders

Graph Autoencoders (GAEs) are graph neural networks designed to learn a low-
dimensional representation of graph-structured data. They consist of an encoder and a
decoder, where the encoder compresses the graph data into a lower dimensional represen-
tation as z = fenc(X,A), and the decoder decompresses the lower dimensional represen-
tation back into the original graph data as X ′ = fdec(z).

Compared to ConvGNN, GAEs have a more flexible and robust architecture that can
capture non-linear relationships in the graph structure, making them better suited for cap-
turing complex relationships. The goal of most GAEs is to learn an encoding function
fenc and a decoding function fdec such that X ′ ≈ X , where the encoding function can be
defined as:

z = fenc(X,A) = σ

 ∑
u∈N (v)

1√
dudv

W1xu +W2xv


• N (v) is the set of neighbors of node v;

• W1 and W2 are weight matrices, and;

• σ is an activation function (e.g., Sigmoid, Maxout or ReLU).

29

The decoding function can be defined as:

X ′ = fdec(z) = σ

 ∑
u∈N (v)

1√
dudv

W3zu +W4zv


• W3 and W4 are weight matrices

The Graph Autoencoder is trained by minimising the reconstruction loss, which mea-
sures the difference between the original graph X and the reconstructed graph X ′. The
reconstruction loss can be defined as:

L =
∑
v∈V

|Xv −X ′
v|2

Where | · | is the Euclidean norm.
Graph Autoencoders are commonly used for learning network embeddings or generat-

ing new graphs. When it comes to network embeddings, GAEs use the encoder function
to extract the networks (through a ConvGNN, RecGNN, or other networks), while the
decoder function is used to preserve the topology of the graph (through a multi-layer
perceptron, similarity, or other technique) [79]. Wu et al. [79] presents DNGR [13] and
SDNE [75] as examples of such networks.

2.1.8 Spatial-Temporal Graph Neural Networks

Spatial-temporal graph Neural Networks (STGNN) [84] is a graph neural network
designed to process graph-structured data with spatial and temporal dependencies. An
STGNN aims to learn a mapping from the sequence of graphs and node features to a
set of node representations Z = z1, z2, . . . , zn that capture the critical spatial-temporal
information in the data, where the mapping can be defined as:

z(t)v = fST-GNN(x
(t)
v ,N (t)

v)

• fST-GNN is the ST-GNN function;

• x
(t)
v is the node feature of node v at time step t;

• N (t)
v is the set of neighbors of node v in the graph Gt.

One of the significant advantages of STGNN compared to other graph neural networks
is the ability to capture both spatial and temporal dependencies in the data explicitly. This
makes STGNN well-suited for processing evolving graph data where the relationships
between nodes change over time. On the other hand, one main disadvantage of STGNN is
that they tend to be more computationally expensive than ConvGNN and GAEs due to the
explicit incorporation of temporal dependencies in their processing of graph-structured

30

data. Some examples of STGNN can be found in the works of Yu et al. [84] Yan et al.
[81] and Wu et al. [78].

31

G
N

N
Ty

pe
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

R
ec

G
N

N
C

ap
tu

ri
ng

te
m

po
ra

ld
ep

en
de

nc
ie

s
N

ee
d

fo
ri

nt
en

se
re

cu
rr

en
cy

C
ap

tu
ri

ng
lo

ca
la

nd
gl

ob
al

de
pe

nd
en

ci
es

C
on

vG
N

N
N

o
ne

ed
fo

rr
ec

ur
re

nc
y

C
ap

tu
ri

ng
lo

ng
-r

an
ge

de
pe

nd
en

ci
es

E
as

ie
rt

o
tr

ai
n

C
ap

tu
ri

ng
co

m
pl

ex
re

la
tio

ns
L

es
s

co
m

pu
ta

tio
na

lly
ex

pe
ns

iv
e

C
ap

tu
ri

ng
no

n-
lin

ea
rr

el
at

io
ns

G
A

E
s

C
ap

tu
ri

ng
no

n-
lin

ea
rr

el
at

io
ns

C
ap

tu
ri

ng
co

m
pl

ex
re

la
tio

ns
N

o
ne

ed
fo

rr
ec

ur
re

nc
y

M
ay

lo
se

sm
al

la
nd

m
uc

h
re

le
va

nt
in

fo
rm

at
io

n
L

es
s

co
m

pu
ta

tio
na

lly
ex

pe
ns

iv
e

M
od

el
ge

ne
ra

liz
at

io
n

ST
G

N
N

C
ap

tu
ri

ng
sp

at
ia

la
nd

te
m

po
ra

ld
ep

en
de

nc
ie

s
C

la
ss

ifi
ca

tio
n

no
de

s
Pr

oc
es

s
re

la
tio

ns
ov

er
tim

e
C

om
pu

ta
tio

na
lly

ex
pe

ns
iv

e
C

ap
tu

ri
ng

co
m

pl
ex

re
la

tio
ns

Ta
bl

e
1:

G
N

N
ad

va
nt

ag
es

an
d

di
sa

dv
an

ta
ge

s.

32

2.1.9 Data Layout

In graph processing, data layout refers to how the nodes and edges of a graph are
stored in memory and how they are organised to enable efficient graph algorithm process-
ing. The choice of data layout can significantly impact the performance of graph process-
ing tasks, such as graph traversal, search, and computation. This section introduces and
explores the main types of data layouts used for graph processing.

2.1.9.1 Adjacency List

Each node is represented as an entry in an array, and the edges connecting to that node
are stored as a list of neighbours. This is a simple and flexible representation, but it can
result in sparse data structures and may not be as efficient as other layouts for some graph
algorithms, and can be expressed as:

adjlist(v) = u | (u, v) ∈ E for each vertex v ∈ V

• adjlist(v) is the list of nodes adjacent to vertex v, and

• (u, v) is an edge connecting nodes u and v in graph G.

2.1.9.2 Adjacency Matrix

The graph is a two-dimensional matrix, with rows and columns representing nodes
and the cells representing edges. This layout is well-suited to dense graphs but can be
very memory-inefficient for sparse graphs, as in large-scale graphs, much memory space
is wasted.

adjmatrix[i, j] =

1 if (i, j) ∈ E

0 otherwise

• (i, j) is an edge connecting nodes i and j in graph G.

• If the entry adjmatrix[i, j] is 1, it means that there is an edge between nodes i and j,
and if it is 0, it means no edge between them.

2.1.9.3 Edge List

In this layout, the graph is represented as a list of edges, where each edge is defined as
a tuple of the form (source node, target node). This layout is simple to implement but can
be inefficient for some graph algorithms, as it requires a linear search to find the edges of
a particular node.

E = (u, v) | u, v ∈ V

33

Each pair (u, v) in the edge list represents an edge connecting nodes u and v in graph
G. In the case of a directed graph, the order of the nodes in the pair (u, v) is important and
indicates the direction of the edge

2.1.9.4 CSR (Compressed Sparse Row)

Is a variation of the adjacency matrix layout designed for sparse graphs. It uses three
lists to represent the graph: one for the node indices, one for the edges, and one for the
offsets into the edge array for each node. This layout is more memory-efficient than a full
adjacency matrix and can be faster for some algorithms, as it provides a more compact
representation of the graph structure.

The three lists that represent the sparse matrix of the graph are:

• val is an list of size m, which stores the non-zero values of the matrix.

• colind is a list of size m, which stores the column indices of the non-zero values in
the matrix.

• rowptr is a list of size n + 1, which stores each row’s starting and ending indexes
in the colind array.

Ai,j = valk

With k ∈ [rowptr[i], rowptr[i+ 1]− 1], and colind[k] = j

Here, Ai,j is the entry in the ith row and jth column of the sparse matrix representation
of graph G.

2.1.9.5 Others

There are also other forms of graph representation in memory, e.g. V-Graphs [11].
Still, the choice of data layout will depend on the characteristics of the graph and the
specific graph processing tasks to be performed. Some graph processing libraries allow
you to dynamically switch between different data layouts, making it easy to experiment
with and find the most efficient representation for your needs. According to Shi et al.
[65], when considering an execution environment using GPU accelerators, the tradeoff is
in the search for minimising the PCIe bandwidth consumption while maximising paral-
lelism and memory access. A possible solution to this problem is to divide large graphs
into smaller structures. However, this approach may result in significant complexity in
“reorganising” the data after processing.

2.1.10 Memory Access Pattern

Due to the focus on the SIMD architecture, the use of shared memory in blocks,
and other features, GPUs are more performant in parallel data processing environments.

34

However, compared to traditional CPUs, GPUs are equipped with reduced-sized main
memories, which can result in intrinsic limitations to processing, such as memory access
conflicts and making it impossible to cache massive graphs entirely in the same memory
[65].

Other points can be mentioned as potential limitations in using GPUs for graph pro-
cessing, such as load unbalancing [41] (also known as workload mapping), branch di-
vergence, kernel calls, and kernel configuration. Algorithms like BFS cause significant
performance losses in the performance of GPUs due to branch divergence among the
system threads [69].

2.1.11 Graph Algorithms

Graphs are just the means to an end. After modelling data in graph format and going
through all necessary pipeline steps (depending on the chosen approach), it is essential to
extract knowledge from this modelling to explore the benefits of graph representation. To
do this, graph algorithms are used. The term “graph algorithms” can currently represent
sets of algorithms employed for graph processing from different perspectives. From the
traditional graph processing standpoint, these algorithms can be divided into (i) traversal
and (ii) iterative algorithms.

Transversal algorithms are algorithms that visit (or traverse) all nodes in a graph in a
systematic and pre-defined way. Their objectives usually focus on finding paths between
nodes, identifying connections between nodes or subgraphs, or calculating inherent at-
tributes of nodes and edges, such as Degree Centrality, Betweenness Centrality, and oth-
ers. Among the most used are Breadth-First Search (BFS), Single-Source Shortest Path
(SSSP), and Depth-First Search (DFS). Iterative algorithms perform multiple iterations
on a graph to solve a problem until a stopping condition is found. They are usually im-
plemented using multiple loop structures (such as do..while and for..in) and can update
the node values during their iterations; the most popular examples are PageRank, Sparse
Matrix-vector Multiplication, and Minimum Spanning Tree (MST).

Furthermore, the term “graph algorithms” can also refer to a large set of other al-
gorithms and concepts, such as A*, the Floyd-Warshall algorithm, Kruskal’s algorithm,
Prim’s algorithm, and, more recently, algorithms used in modelling GNN, regardless of
the type.

2.1.12 Graph Processing

Graph processing refers to the consumption of computational resources for applying
techniques and methodologies to analyse and extract insights from data in graph format.
This processing can be primarily employed for (i) preprocessing of input data, (ii) pro-
cessing of graph algorithms on top of preprocessed data, (iii) processing of neural network
models used to predict information based on processed data, (iv) processing of output data

35

and visualisation of graphs. As mentioned earlier (subsection 1.2.2), each stage can be
carried out using specialised frameworks and environments, and they come with specific
challenges. Although used for all these stages in this work, graph processing focuses
explicitly on the computational cost in the GNN model processing training phase.

2.2 The Scalability Challenge

In 1967, Amdahl [5] presented in his work a thesis on the limitation of single process-
ing machine computing, which is popularly known and cited to this day as the Amdahl
Law – which mathematically describes the limitation of a sequential algorithm processing
when “compared” to parallel processing. Despite there being works in the literature that
report on parallel and/or distributed processing [52] [39] [38] [4] relating computer sys-
tems from neuroscience to biology elements, John von Neumann went further, founding
many of the techniques that today form the basis of computing [74] [73].

Currently, applications such as social networks, search engines, and network monitors
are the most common and can require a high degree of processing and storage of these
structures containing up to trillions of nodes and edges. However, only from the beginning
of the 2000s did studies presenting robust systems for processing these structures emerge
[66] [31] [83] [9]. Possible reasons for this are the growth of indexing systems such as
Google, Wikipedia, and others.

Most studies present some points about scalability in graph neural networks, such as
the cost associated with the incompleteness of the generated graphs. Among the tech-
niques mentioned are (i) the use of data sampling, causing a node to miss its influential
neighbours, and (ii) the use of data clustering, with the tradeoff being the loss of distinct
structural patterns among sub-graphs. However, in this study, the authors do not con-
sider the possibility of other types of scalability, such as the use of vertical or horizontal
parallelism, as well as typical problems of large-scale systems growth, such as real-time
processing, increase in the number of users and GPUs memory resource limitations.

Regarding addressing the scalability problem, two approaches are usually possible:
horizontal scalability and vertical scalability. Horizontal scalability is a system’s ability
to handle a growing load by adding more nodes to a distributed system. This means that
the system can scale proportionally to the number of resources added, such as servers,
to deal with the increase in traffic or demand. This technique is usually accompanied by
other methods for managing and balancing these nodes, such as load balancing, which
distributes incoming requests among multiple resources, allowing the system to handle
more load without reaching its limit. In contrast, vertical scalability is the ability of a
system to handle a growing load by adding more power to an existing node in the system.
This is usually achieved by upgrading the hardware components of the node, such as
adding more RAM or a faster CPU. It can also be achieved by increasing the parallelism

36

of the code executed on a node. In other words, vertical scalability is about scaling a
single node in the system instead of adding more nodes, as in horizontal scalability.

2.2.1 Graph Processing on GPUs

In recent years, numerous advances have been implemented in Graphics Processing
Units (GPUs), such as intense parallel processing and increased memory access band-
width, causing researchers and professionals worldwide to migrate from traditional CPUs
to GPUs for specific tasks. Among these tasks, numerous studies using GPUs for graph
processing have emerged [65]. Unlike CPUs that use the MIMD (Multiple Instruction
Multiple Data) instruction architectures, GPUs use the SIMD (Single Instruction Multi-
ple Data) patterns, allowing gains in parallel processing at the cost of a loss in memory
space.

2.2.2 Scalability on GPUs

When it comes to GPUs, we can achieve both types of parallelism, combining the
concepts of horizontal and vertical scalability with the power and performance of GPUs,
depending on the scenario the application is in. Horizontal scalability can be achieved on
GPUs through GPU clusters, where multiple nodes with GPUs are combined to form a
single, more extensive computing system, a technique commonly used for cryptocurrency
mining, for example. This allows you to expand your computing capacity by adding
more nodes to the cluster. In addition, each node in the cluster can be responsible for
processing a portion of the workload, and the cluster can be balanced to ensure efficient
work distribution. On the other side, achieving vertical scalability with GPUs is possible
through the following:

• Use of GPUs with a high number of cores: GPUs can reach thousands of cores that
can work in parallel, so choosing a GPU with a higher number of cores will give
you more parallel processing power.

• Take advantage of GPU parallelism: Make sure your algorithms are designed to
exploit the GPU’s parallel processing capabilities. For example, parallel algorithms,
such as CUDA or OpenCL, perform complex operations in parallel on the GPU.

• Use batch processing: Divide your data into smaller pieces and process each ele-
ment in parallel on the GPU. This can help you maximize the GPU’s parallel pro-
cessing capabilities and reduce the time required to complete a computation.

• Optimize memory access patterns: GPUs can process data in parallel, but their
memory bandwidth can limit them. Optimizing how data is stored and accessed
can reduce memory overhead and increase parallel processing performance.

37

2.2.3 Scaling Neural Networks

When it comes to training neural networks, some techniques using both vertical and
horizontal scalability are mentioned in the literature, such as the use of pipeline paral-
lelism [37]. In the GPipe technique, Huang et al. [37] introduces the concept of micro-

batch to approach some of the main advantages found in the use of SPMD (Single Pro-

gram Multiple Data), without introducing additional bottlenecks. As a result, the ap-
proach reaches linear scalability based on the number of machines used. Another possible
method is partitioning a graph into smaller subgraphs and extracting samples from these
subgraphs, a task initially presented by Chiang et al. [18]. However, there are indications
that both approaches can break important graph structures and do not scale well with the
growth of the number of hidden layers [45].

Another way to optimize graph neural network (GNN) processing is by optimizing the
data structures and operations used to represent the data in memory. The Message-passing
step can be very computationally expensive, and numerous studies have been conducted
to optimize these processes. Yang et al. [82] used sparse-matrix dense-matrix (SpMM)
multiplication on GPU, resulting in an average speed-up of 31.7% up to 4.1x speed-up
when compared to other classic implementations of algorithms for message passing. The
authors used Compressed Sparse Rows (CSR) structures in this implementation.

2.3 Related Work

Fey and Lenssen [24] introduced the PyTorch Geometric framework. Their work eval-
uated the performance of the framework against Deep Graph Library (DGL) [76], regard-
ing the training time of ConvGNN, GAT (Graph Attention Networks), and RGCN (Rela-

tional Graph Convolution Network) models. However, the results presented for most
experiments when both frameworks used the gather and scatter optimisation method
achieved similar results (except for GAT). The study also does not explore other forms of
parallelism that could optimise training results, such as using multiple GPUs or a cluster
of CPU nodes. It is mentioned that possible improvements could be implemented in the
framework. In December 2022, a version (2.2.0) was released with a series of parallelism-
related implementations and support for multiple GPUs (which did not exist until then).
The study also does not mention the average resource consumption during the training
epochs.

Capotă et al. [14] conducted a benchmark study on the powerful graph processing plat-
forms at the time of the study, evaluating the performance of algorithms such as breadth-
first search, connected components, community detection, graph evolution, and more for
a set of large-scale datasets, assessing performance in terms of processing time in both
single node and cluster environments. However, the tools mentioned (Giraph, GraphX,
Neo4j and MapReduce) in the study are dedicated to the ETL stage of graph processing,

38

and there needs to be a comparison regarding the training of any GNN.
Dwivedi et al. [23] conducted a benchmarking of a large set of different graph neural

networks, mainly evaluating their performance in terms of model accuracy. The evalua-
tion demonstrates robust and extensive results, covering various datasets and GNN. The
study also presents the processing time required for each training epoch in each model.
However, despite the tests being conducted in a well-equipped processing environment
(GPU clusters), there needs to be more indication that parallelism and scalability methods
were explored, and all models were implemented using the same framework (DGL based
on PyTorch).

Abadal et al. [1] presents a survey on the main techniques, studies, and frameworks
for accelerating Graph Neural Networks. The study observes the main stages of training
a graph neural network, the main models used (algorithms in work), and a straightfor-
ward overview of the different accelerators. The study and classification of frameworks
for GNN acceleration demonstrate a significant academic contribution to the field. How-
ever, it could be more explicit regarding the scope of use of each framework (examples
of ETL in conjunction with accelerators and model creation frameworks are cited), and
the taxonomy of these frameworks needs to follow their purpose. In the search for the
accelerators and frameworks cited in the work, some do not have any easy-to-use API for
programmers or researchers and do not have documentation supporting their use, relying
only on their introduction paper. Additionally, no comparative study with benchmarking
is presented between the types of models or between the different accelerators.

In Table 2, the studies were grouped according to their research aims and open gaps.

39

W
or

k
Ye

ar
R

es
ea

rc
h

A
im

s
O

pe
n

G
ap

s

Fe
y

an
d

L
en

ss
en

[2
4]

20
19

Fr
am

ew
or

k
D

efi
ni

tio
n

D
on

’t
ex

pl
or

e
m

ul
tip

le
fo

rm
s

of
pa

ra
lle

lis
m

D
on

’t
m

ea
su

re
re

so
ur

ce
co

ns
um

pt
io

n
du

ri
ng

tr
ai

ni
ng

ep
oc

hs
C

ap
ot

ă
et

al
.[

14
]

20
15

G
ra

ph
To

ol
s

B
en

ch
m

ar
ki

ng
O

nl
y

ex
pl

or
e

E
T

L
fr

am
ew

or
ks

D
w

iv
ed

ie
ta

l.
[2

3]
20

20
G

N
N

To
ol

s
B

en
ch

m
ar

ki
ng

D
on

’t
ex

pl
or

e
m

ul
tip

le
fo

rm
s

of
sc

al
ab

ili
ty

O
nl

y
us

e
D

G
L

fr
am

ew
or

k

A
ba

da
le

ta
l.

[1
]

20
21

G
ra

ph
A

cc
el

er
at

or
s

Su
rv

ey
D

on
’t

sh
ow

an
y

co
m

pa
ra

tiv
e

be
nc

hm
ar

k
C

on
fu

se
d

ta
xo

no
m

y
an

d
co

m
pa

ri
so

n

Ta
bl

e
2:

B
en

ch
m

ar
k

St
ud

ie
s

an
d

O
pe

n
G

ap
s.

3 Evaluation Methodology

In the development of a project or application focused on the creation, analysis, visu-
alisation and knowledge extraction in graphs, some decisions need to be made based on
the following:

• The amount and type of the input data;

• The number of end users;

• The need for GPUs or CPUs;

• The data is received in real time;

• The application will be run on-premises or in a cloud environment;

• Project budget;

• The need for training or using some GNN, among others.

Depending on the answers extracted for the above points, some tools (libraries, frame-
works or toolkits) will be necessary to achieve the goal. However, the state-of-the-art on
the subject could be more explicit regarding this set of tools and their best applicability
is given the scenario. In most cases, the input data type will guide the project in choos-
ing this set of tools, but this will only sometimes be the case if, for example, the project
budget is a limiting factor.

Graph tools are presented in large quantities. Sometimes, they are dedicated to dealing
with specific problems, such as specialised datasets or applying some algorithms. Other
times, they are generic enough to be distributed as a large graph working ecosystem. To
achieve the goals proposed in Chapter 1, some boundaries were set in the methodology
of this study. This work aims to conduct a comparative study of the resource footprint
related to frameworks used for training neural networks on graphs (GNN) and their main
features related to scalability; for this, the following steps were taken:

1. Selection of the frameworks;

41

2. Classification of the frameworks according to some features of interest, including
intuitive API for programmers, scalability methods, and relevance in the commu-
nity;

3. Elaboration of black-box scenarios with different GNN models;

4. Execution of the test scenarios;

5. Extraction of results.

Initially, the most well-known and widely used graph processing frameworks in the
industry were separated into three classes: (i) General Purpose Analytical Engines; (ii)
ETL Graph Engines and (iii) GNN Engines. Based in Nguyen et al. [55] were considered
public open-source data (like GitHub stars and mentions) to select these tools. Some of the
frameworks presented were identified using the terms gnn, graph, tools, frameworks,
deep learning through GitHub’s “Advanced Search” tool. Figures 6, 7, and 8 presented
the evolution of GitHub stars for each of them (extracted from CodeTabs). Only the tools
with more than 1.000 stars were extracted for this study. For this reason, some newly
arisen tools (e.g., TF-GNN) have been removed from the set, even though they may have
a considerable impact on the community in the future. Note that GraphX and Giraph

(Figure 7) are both part of the Apache project as well as their codebase.

Figure 6: General Purpose Analytical Engines GitHub Stars.

Source: CodeTabs.

3.1 Frameworks Selection and Classification

The group of General Purpose Analytical Engines is mentioned only core frame-
works, where the significant examples are PyTorch, TensorFlow, PaddlePaddle and

42

Figure 7: ETL Graph Engines GitHub Stars.

Source: CodeTabs.

Apache Spark. Those frameworks are the base for dozens or thousands of other toolk-
its and libraries. In the ETL Engines are grouped the frameworks that, for the most part,
have been used for this purpose for decades or are branches of larger projects that have
been specialised for the use in graph domains in the ETL stage, meaning that they can per-
form some activities as calculating Centralities, running the most used graph algorithms
as PageRank, and more. As examples, GraphX e Apache Giraph and Plato (or TGraph)
are mentioned in this group.

For the GNN Engines, only the frameworks used for Machine Learning prediction
models were selected, and most of them have emerged (or are plugins) from one or more
General Purpose Engines. The “GNN Engines” nomenclature refers to their ability to
train Graph Neural Networks and related Machine Learning models. Although some of
them can perform graph algorithm calculations, this is not their primary focus, for this
group is mentioned PyTorch Geometric, DGL, CogDL, PGL, GraphLearn (or AliGraph),
GraphVite, Euler, Spektral and GraphNets.

Following the extraction of these tools, they were selected for evaluation based on
the following criteria: the tool (1) is dedicated to the Business Engine with a focus on
intelligent systems analysis, (2) it has an API that is easy to use and understand, (3) it
has easily understandable and accessible documentation, (4) the documentation is written
primarily in English, (5) the main types of GNN can be implemented using the same
tool, (6) the tool has indications of horizontal and vertical scalability methods, and (7) the
use of these methods is straightforward to implement. Of course, this is still a work in
progress (see Table 4). However, the first impression is that implementing some of these
frameworks is not easy, probably because of technical immaturity (most were released
only in 2020).

43

Figure 8: GNN Engines GitHub Stars.

Source: CodeTabs.

Based on the analysis of the frameworks conducted, it was possible to observe a sig-
nificant advantage of the PyTorch Geometric framework compared to others, specifically
when focusing on processing Graph Neural Networks. The difference in the number of
stars obtained provides evidence of greater community support, which consequently of-
fers users and researchers more accurate answers to their questions besides the ability to
optimise the features over time. Utilising General-Purpose tools may require substantial
initial effort to implement methods and basic interfaces for graph operations, potentially
significantly extending the time necessary for GNN model analysis. In addition to the
support shown in Table 4, the chosen framework also offers a wide range of functionali-
ties dedicated to parallel and distributed processing, including Batch Processing support,
GPU acceleration, processing on CPU clusters, and GPU clusters (with the latter being
released during the development of this work).

It is worth mentioning that the features and analysis of the frameworks presented
here may undergo variations over time. Some may experience significant improvements,
become more specialised in a specific task, or even be discontinued. Furthermore, new
tools may emerge, surpassing all current ones.

3.2 Profiling Resources

When evaluating the performance of applications and systems, numerous existing al-
ternatives and methodologies are available, with context being the most significant differ-
ential among cases. Two of the most popular, USE and RED, are complementary metrics
that assess Usage, Saturation, and Errors (USE acronym), or Rate, Errors and Duration
(RED acronym). The USE methodology (an acronym for Utilisation, Saturation, and

44

Framework Stage Based On Stars
PyTorch General Purpose - +63k

TensorFlow General Purpose - +171k
PaddlePaddle General Purpose - +19.6k
Apache Spark Mostly ETL - +35k

Apache Hadoop Mostly ETL - +13.3k
GraphX ETL Spark Unknown
Giraph ETL Hadoop Unknown
Plato ETL Inconclusive +1.9k
PyG Analytical PyTorch +16.8k
DGL Analytical PyTorch/TensorFlow/MXNet +11.1k

CogDL Analytical PyTorch +1.4k
PGL Analytical PaddlePaddle +1.5k

GraphLearn Analytical PyTorch/TensorFlow +1.1k
GraphVite Analytical PyTorch +1.1k

Euler Analytical TF/X-DeepLearning +2.8k
Spektral Analytical Keras/TensorFlow +2.2k

GraphNets Analytical TensorFlow/Sonnet +5.2k

Table 3: Frameworks Stage Support and Base Tools.

Framework Easy API Easy Docs GNN Features
PyG Yes Yes RecGNN, ConvGNN, GAE, STGNN
DGL Yes Yes RecGNN, ConvGNN, GAE, STGNN

CogDL Yes Yes Inherit PyG
PGL Inconclusive Inconclusive ConvGNN, STGNN, GATs variations

GraphLearn Yes Inconclusive ConvGNN, STGNN
GraphVite Inconclusive Inconclusive Inconclusive

Euler No No ConvGNN, GAE
Spektral Inconclusive Yes ConvGNN, GATs variations

GraphNets No No Graph Networks

Table 4: GNN Frameworks Features Support

Errors) provides a simple and effective method for analysing system performance [30].
In this representation, Utilisation is related to the percentage of time a resource is busy
performing a specific task, and saturation is when a resource cannot accept any new work-
load because it has reached 100% Utilisation. At the same time, Errors are the number
of errors observed during the execution of this workload. The flow defined in the USE
methodology can be seen in Figure 9. It is important to note that each type of resource
in a computer system has its Utilisation and saturation calculated relative to its inherent
unit of measurement (such as bytes for memory). In this work, two metrics referenced by
these techniques were primarily utilised. From the USE methodology, consider the metric
high utilization point (HUP) as a reference for peaks of 100% resource utilisation (CPU,
GPU, and memory) and execution time as a reference for the duration (time to execute
the task), based in the duration of the RED methodology.

45

Figure 9: The USE Method.

Source: Gregg [30].

3.3 Creating the Test Cases

In the cases used for testing and evaluating the frameworks, the black-box validation
method was used, where the focus of the evaluation is on the results obtained as the
output of the assessment in contrast to a set of inputs of the system, and the intermediate
steps are seen as a large black box. In this scenario, it is essential to note that the values
considered as test inputs are (1) the execution environment (CPU or GPU), (2) the type of
GNN to be evaluated, (3) the dataset, and (4) the absence or presence of techniques that
influence scalability. The set of output considered was: (1) the training execution time (in
seconds) of the model under the specified conditions, (2) the CPU or GPU consumption
(in percentage) during each epoch of training, (3) the CPU or GPU memory consumption
(in GB) during each epoch of training and (4) the existence or absence of high utilisation
points. The experiments were carried out as a black-box approach for all selected tools,
using their specific APIs.

46

3.3.1 Execution Environment

For the single CPU tests, was used a machine with 2x Intel(R) Xeon(R) CPU @

2.20GHz and 12GB of RAM running in a Google Colaboraty Cloud environment (Co-
lab Pro Plan). A machine with the same host CPU configuration was used for the single
GPU tests, and a NVIDIA Tesla T4 with 15GB of dedicated memory. The execution en-
vironment is completely restarted between test suites to prevent any potential remnants
from the previous execution from influencing the subsequent execution (such as Garbage
Collector, Caching, etc.). Furthermore, the resource consumption before and after the
training executions has been extracted.

3.3.2 Models

For the experiments, was used GCN [42] and GraphSAGE [34] models with the fol-
lowing hyperparameters: (i) learning rate of 0.01, (ii) optimization using the Adam gra-
dient, (iii) dropout rate of 0.5, (iv) 16 hidden channels, (v) 2 hidden layers and (vi) ReLu
as activation function. These values were established in a significant portion of the exper-
iments presented by Kipf and Welling [42] and Hamilton et al. [34]. In the original GCN
experiments, up to 200 epochs were used [42], while in the GraphSAGE experiments,
originally, 10 epochs were utilised [34]. In this work, 100 epochs were used as a refer-
ence in both experiments, aiming to obtain a substantial dataset for resource consumption
analysis.

The Figure 10 represents the architecture of the models used for profiling. In the input
layer, we receive the node(s) to be classified by the node classification task, then pass
through the two hidden layers (GCN or GraphSAGE) that are activated by the ReLu func-
tion until they are predicted in the output layer. Finally, the graph dimension is reduced
using t-SNE for model visualization. Except for the last step, hardware consumption val-
ues during model training as well as total processing time are extracted, both of which
will be discussed in the following chapters.

The utilized implementation of the GraphSAGE model presents nearly double the
number of parameters utilized in the GCN. As a point of comparison, the GCN model us-
ing the Amazon Computers dataset has a total of 12,458 parameters, whereas the Graph-
SAGE implementation presents 24,890 parameters. Examining the parameters with the
CiteSeer dataset, one can observe 9,750 parameters in GCN compared to 19,478 parame-
ters in GraphSAGE. These values were obtained using the “torch geometric.nn.summary”
function of PyTorch Geometric.

3.3.2.1 GCN

For the first set of experiments, a ConvGNN model was set with two convolutional
layers, where the output of the first layer is used as input to the second convolutional
layer. The model is defined by Kipf and Welling [42] with a Convolutional Operator

47

Figure 10: Representational Diagram of the used models (GCN and GraphSage).

Source: The author(s).

popularly known as GCN and were used the implementation of Fey and Lenssen [24] in
PyTorch Geometric. The time and space complexity of the GCN model was analyzed in
the work of Blakely et al. [10]. At each epoch iteration, were extracted the values of CPU
and GPU consumption and memory usage, and at the end of the execution, were extracted
the total execution time.

3.3.2.2 GraphSAGE

The second chosen model, also known as GraphSAGE, was presented in the work by
Hamilton et al. [34]. The model uses convolutional operators, employing the same param-
eters given in the first experiment. GraphSAGE [34] has an aggregation mechanism for
neighbouring node information, allowing it to learn a node’s neighbourhood’s topology
and feature distribution. This way, it allows the models to process previously unknown
nodes without the need for model retraining, thereby increasing the model’s flexibility
compared to GCN.

48

3.3.3 Datasets

3.3.3.1 Amazon Computers

Introduced by Shchur et al. [64], the Amazon Computers dataset is a subset of the
dataset defined by McAuley et al. [51], where nodes represent goods (mainly electron-
ics), edges represent two goods that are frequently purchased together (Customers Who

Bought This Item Also Bought), features are a set of keywords extracted from product
reviews, and labels represent the category of each product [64]. This dataset is commonly
used in the literature for node classification and graph classification tasks; in Figure 11,
a hypothetical and simplified example of the structures found in this dataset is presented,
where different types of computer-related products that a customer commonly purchases
together are depicted, forming a graph of relationships between these products. The graph
in question is undirected, with unweighted edges and nodes with 767 features (although
only a few are represented in the example).

Figure 11: Amazon Computers (or AmazonCoBuy) Representation.

Source: The author(s).

For the experiments, this dataset has represented 767 features, along with ten classes,
approximately 13700 nodes and 490000 edges, partitioned in 128 parts, with “batch size

= 32” resulting in 4 subgraphs with around 3500 nodes; where the nodes have an average
degree of 35.76. The graph is undirected, with isolated nodes and without self-loops. Up
to a point, the same partitioning strategy was used for every test case.

The visualisation of nodes and their respective classes with GCN shown in Figure 12

49

Figure 12: Visualisation of the Amazon Computers graph in GCN.

Source: The author(s).

Figure 13: Visualisation of the Amazon Computers graph in GraphSAGE.

Source: The author(s).

(left) was performed using t-Distributed Stochastic Neighbor Embedding (t-SNE), which
is used for data with relatively low dimensions, taking around 2 minutes and 45 seconds
to render. In the right of the figure, the same embedding technique was applied to re-
duce the graph’s dimension, allowing visualisation of both nodes and edges using the
draw networkx nodes and draw networkx edges methods from NetworkX. This process
took approximately 40 minutes to complete rendering.

The same node visualisation presented by the GraphSAGE model (see Figure 13)
took 3 minutes and 13 seconds for rendering, while the complete graph visualisation took
approximately 47 minutes and 20 seconds.

50

3.3.3.2 CiteSeer

CiteSeer was introduced as an electronic system for indexing citations in academic
literature [27]. Nowadays, it comprises a dataset used in numerous works in computer
science, particularly for node classification tasks in graphs [62].

Figure 14: Visualisation of the Citeseer dataset.

Source: Zheng et al. [86].

Figure 15: Visualisation of the CiteSeer dataset in GCN.

Source: The author(s).

The CiteSeer dataset was used for the experiments, which cite papers in the literature.
In this dataset, 602 features are found, along with six classes, approximately 4230 nodes
and 10600 edges, where the nodes have an average degree of 2.52. The graph is undi-
rected, with no isolated nodes or self-loops. The visualisation of nodes in their respective
classes shown in Figure 15 (left) was performed using t-Distributed Stochastic Neighbor
Embedding (t-SNE), which is used for data with relatively low dimensions, taking around
45 seconds to render. In the right of the figure, the same embedding technique was applied
to reduce the graph’s dimension, allowing visualisation of both nodes and edges using the
draw networkx nodes and draw networkx edges methods from NetworkX. This process
took approximately 17 minutes to complete rendering.

51

Figure 16: Visualisation of the CiteSeer dataset in GraphSAGE.

Source: The author(s).

3.3.3.3 CoAuthors (CS)

CoAuthor was introduced by Shchur et al. [64] paper. The graph represents authors
(as nodes) connected by an edge if they co-authored a literature paper, where the task is
to map authors to their respective fields of study by paper keywords. In the experiments,
the “CS” sub-dataset was used, representing papers related to Computer Science. In this
dataset, 6805 features are found, along with 15 classes, approximately 18000 nodes and
160000 edges, where the nodes have an average degree of 8.93. The graph is undirected,
with no isolated nodes or self-loops.

Figure 17: Visualisation of the CoAuthors (CS) dataset in GCN.

Source: The author(s).

The visualisation of nodes in their respective classes shown in Figure 17 (left) was
performed using t-Distributed Stochastic Neighbor Embedding (t-SNE), which is used
for data with relatively low dimensions, taking around 4 minutes to render. In the right
of the figure, the same embedding technique was applied to reduce the graph’s dimen-
sion, allowing visualisation of both nodes and edges using the draw networkx nodes and

52

Figure 18: Visualisation of the CoAuthors (CS) dataset in GraphSAGE.

Source: The author(s).

draw networkx edges methods from NetworkX. It took approximately 17 minutes and 30
seconds to complete rendering.

Although the graphs used inherently do not possess self-loops, this phenomenon can
be observed in some cases after reduction through t-SNE. In certain instances, this can
be attributed to anomalies resulting from the dimension reduction process, while in other
cases, it may stem from the high density of nodes and edges within a limited visualization
space.

3.3.3.4 Synthetic Datasets

Tests and parallel experiments were conducted using synthetic datasets, particularly
with the FakeDataset and GeometricShapes methods from PyTorch Geometric. How-
ever, the accuracy values obtained with these methods – ranging from 10000, 100000,
and 500000 nodes and with graph configurations similar to the previous datasets – were
extremely low (between 0.10 and 0.12), making them less relevant when compared to
others, considering their fidelity to the real world data. Therefore, the results obtained
with these datasets were not explored in-depth in this study, although they appear to offer
a significant opportunity for future research.

4 Results

The experiments were conducted in both scenarios: training with CPU only and train-
ing with CPU accelerated by GPU, using the PyG framework API for the GCN and
GraphSAGE models, applied to the Amazon Computers, CiteSeer and CoAuthors (CS)
datasets. Table 5 summarises the main results obtained during the training and validation
of the models, presenting the environment configurations first, followed by the number
of high utilisation points (HUP in units) for CPU and GPU, and finally, the maximum
accuracy achieved in the validation phase. Although only one execution of resource pro-
file behaviours is presented, it can be observed through the repetition of executions that,
despite minor variations, these are normal behaviours. Changes in the execution environ-
ment, such as the local time of the execution, may interfere with the results; however,
these cases are inherent to the use of Cloud environments. All the extracted results are
presented on GitHub1.

4.1 GCN

Training the GCN with the Amazon Computers dataset was possible to observe 33
high utilisation points (see Figure 19), resulting in 33.3% of the trained epochs when
evaluating the CPU’s average consumption (all cores). The total training time using only
CPUs was approximately 1 minute. On the other hand, using GPU acceleration, it was
impossible to observe any HUP on the host or the device. The maximum GPU consump-
tion did not reach 20% in any training epoch (see Figure 20). The total GPU acceleration
training time was approximately 7 seconds – resulting in an 8.5x gain. The memory con-
sumption rate remained stable in both scenarios, with slight variation when using CPUs.
However, it is essential to note that the memory read and write rate during the data loading
stage in memory was not calculated but only during training.

With the CiteSeer dataset, it was possible to observe 15 high utilisation points (see
Figure 21), resulting in 15.0% of the trained epochs when evaluating the CPU’s average
consumption (all cores). The total training time using only CPUs was approximately 23

1https://github.com/luucasrb/MasterResults

https://github.com/luucasrb/MasterResults

54

seconds. Using GPU acceleration, it was possible to observe 64 (64%) peaks of high
utilisation on the host machine but none on the device. The maximum GPU consumption
is about 3% (see Figure 22). The total GPU acceleration training time was approximately
22.8 seconds – resulting in 1,009x gain. The memory consumption rate remained stable
in both scenarios, with slight variation when using CPUs.

With the CoAuthors dataset, it was possible to observe 14 high utilisation points (see
Figure 23), resulting in 14.0% of the trained epochs when evaluating the CPU’s average
consumption (all cores). The total training time using only CPUs was approximately 55.7
seconds. Using GPU acceleration, it was possible to observe 16 peaks of utilisation on
the host (16.0%), but the maximum GPU consumption reached 20% (see Figure 24) with
no point of high utilisation. The total GPU acceleration training time was approximately
16.4 seconds – resulting in a 3.3x gain. The memory consumption rate remained stable in
both scenarios, with slight variation when using only the CPU.

55

Figure 19: Training GCN with Amazon Computers - CPU only.

Source: The author(s).

In Figure 19, the training of the GCN model with the Amazon Computers dataset is
presented2, where it is possible to observe the 33 points of high CPU utilisation, meaning
periods where the average consumption of all CPU cores is at 100% utilisation. The
critical period occurs in the first quarter of execution (between epochs 0 and 25). The
x-axis represents epochs, while the y-axis represents the percentage of utilisation. In
the second part of the figure, the consumption of main memory (in GB) during epoch
execution is shown, where a low change-over in memory consumption can be noticed
(between 0.54 and 0.6 GB).

2Amazon Computers represents the related electronic products dataset, containing approximately 13700
nodes, 490000 edges, 767 features, 10 classes, and an average node degree of 35.76, as defined in Sec-
tion 3.3.3.1. Using the GCN model defined in Section 3.3.2.1 for the node classification task.

56

Figure 20: Training GCN with Amazon Computers - GPU Accelerated.

Source: The author(s).

In Figure 20, the execution of the same (GCN-Amazon) scenario using both CPU
(host) and GPU (device) is observed, where no points of high utilisation are visible on
both the host and the device. The x-axis represents epochs, while the y-axis represents
the percentage of utilisation. The consumption of both memories remained stable. In
the right side of the figure, the consumption of both main and device memories (in GB)
during epoch execution is shown, where a constant memory consumption can be noticed
(2.4 GB for the main memory and 1.25 GB for GPU memory).

57

Figure 21: Training GCN with CiteSeer - CPU only.

Source: The author(s).

In Figure 21, the training of the GCN model with the CiteSeer dataset is presented3,
where it is possible to observe the 15 points of high CPU utilisation. The critical period
occurs between epochs 60 and 80. The x-axis represents epochs, while the y-axis rep-
resents the percentage of utilisation. In the second part of the figure, the consumption
of main memory (in GB) during epoch execution is shown, where a low change-over in
memory consumption can be noticed (0.511 to 0.514 GB).

3CiteSeer represents the academic citation dataset, containing approximately 4230 nodes, 10600 edges,
602 features, 6 classes, and an average node degree of 2.52, as defined in Section 3.3.3.2. Using the GCN
model defined in Section 3.3.2.1 for the node classification task.

58

Figure 22: Training GCN with CiteSeer - GPU Accelerated.

Source: The author(s).

In Figure 22, the execution of the same (GCN-CiteSeer) scenario using both CPU
(host) and GPU (device) is observed, where 64 points of high utilisation are visible on the
host but no HUP on the device.

From the first to the 67th epoch, the host exhibited high utilisation while the device
demonstrated low consumption. The x-axis denotes epochs, while the y-axis represents
the percentage of utilisation. On the right side of the figure, the consumption of the main
and device memories (in GB) during epoch execution is depicted, with both memories
showing almost stable consumption and minimal fluctuation.

59

Figure 23: Training GCN with CoAuthors CS - CPU only.

Source: The author(s).

In Figure 23, the training of the GCN model with the CoAuthors (CS) dataset is pre-
sented4, where it is possible to observe the 14 points of high CPU utilisation. Unlike
previous executions, here the machine’s behaviour shows crest and troughs that alternate
approximately every 10 epochs, forming a pattern similar to a sinusoidal wave. The x-
axis represents epochs, while the y-axis represents the percentage of utilisation. In the
second part of the figure, the consumption of main memory (in GB) during epoch exe-
cution is shown, where a low change-over in memory consumption can be noticed in a
pattern similar to the consumption graph.

4CoAuthors (CS) represents the literature co-authored authors dataset, containing approximately 18000
nodes, 160000 edges, 6805 features, 15 classes, and an average node degree of 8.93, as defined in Sec-
tion 3.3.3.3. Using the GCN model defined in Section 3.3.2.1 for the node classification task.

60

Figure 24: Training GCN with CoAuthors CS - GPU Accelerated.

Source: The author(s).

In Figure 24, the execution of the same (GCN-CoAuthors) scenario using both CPU
(host) and GPU (device) is observed, where 16 points of high utilisation are visible on
the host but no HUP on the device. Between the epochs 50 and 70 the host machine
reaches its peaks. The x-axis represents epochs, while the y-axis represents the percentage
of utilisation. In the right side of the figure, the consumption of the main and device
memories (in GB) during epoch execution is shown, the consumption of both memories
remained almost stable with a very low change-over.

4.2 GraphSAGE

Training the Amazon Computers with GraphSAGE, it was possible to observe 8
points of high utilisation (see Figure 25), resulting in 8% of training epochs when eval-
uated using only CPU execution. The total training time was 3 minutes and 48 seconds,
and the memory consumption was slightly higher when compared with the GCN profile.
Using the GPU-accelerated environment for training the GraphSAGE network, it was pos-
sible to observe a total training time of 24.8 seconds – resulting in a 9.1x gain. However,
there was an increase to 65 (65%) HUP on the Host machine, in addition to obtaining a
peak GPU device utilisation of 60%. However, it has still not been possible to observe
any points of high utilisation (see Figure 26).

Training with the CiteSeer with CPU only took approximately 32 seconds, with 78
points of high utilisation (78% of the training epochs) observed (see Figure 27). Mean-
while, training the model using GPU acceleration took around 18 seconds – resulting in
1.7x gain – where 43 HUP (43%) were observed on the Host machine, and no points of

61

high utilisation were observed on the GPU device, with a peak usage of only 6% (see
Figure 28).

The CoAuthors dataset with CPU only took approximately 17 minutes and 32 sec-
onds, with 0 points of high utilisation observed (see Figure 29). Meanwhile, training the
model using GPU acceleration took around 38 seconds – resulting in 27.6x gain – where
21 points of high utilisation (21%) were observed on the Host machine and 9 points of
high utilisation on the GPU device (see Figure 30). So far, it’s the only experiment where
we’ve observed a point of high utilisation on the GPU device.

62

Figure 25: Training GraphSAGE with Amazon Computers (CPU only) resources.

Source: The author(s).

In Figure 25, the training of the GraphSAGE model with the Amazon Computers
dataset is presented5, where it is possible to observe the 8 points of high CPU utilisation.
Here the machine’s behaviour shows crest and troughs that alternate approximately every
5 epochs. The x-axis represents epochs, while the y-axis represents the percentage of
utilisation. In the second part of the figure, the consumption of main memory (in GB)
during epoch execution is shown, where a low change-over in memory consumption can
be noticed (between 0.715 and 0.735 GB).

5Amazon Computers represents the related electronic products dataset, containing approximately 13700
nodes, 490000 edges, 767 features, 10 classes, and an average node degree of 35.76, as defined in Sec-
tion 3.3.3.1. Using the GraphSAGE model defined in Section 3.3.2.2 for the node classification task.

63

Figure 26: Training GraphSAGE with Amazon Computers - GPU Accelerated.

Source: The author(s).

In Figure 26, the execution of the same (SAGE-Amazon) scenario using both CPU
(host) and GPU (device) is observed, where it is possible to observe 65 HUP are visible
on the host and no HUP on the device. The x-axis represents epochs, while the y-axis
represents the percentage of utilisation. The critical period for the host occurs between
epochs 0 and 70, while the GPU’s peak usage reaches 60% at some points. The consump-
tion of both memories remained stable. In the right side of the figure, the consumption
of both main and device memories (in GB) during epoch execution is shown, where an
almost constant memory consumption can be noticed (2.55 GB for the main memory and
2.678 GB for GPU memory).

64

Figure 27: Training GraphSAGE with CiteSeer - CPU only.

Source: The author(s).

In Figure 27, the training of the GraphSAGE model with the CiteSeer dataset is pre-
sented6, where it is possible to observe the 78 points of high CPU utilisation. The critical
execution periods are concentrated in the central part of the chart, excluding the first and
last tenth of the period. The x-axis represents epochs, while the y-axis represents the per-
centage of utilisation. In the second part of the figure, the consumption of main memory
(in GB) during epoch execution is shown, where a low change-over in memory consump-
tion can be noticed (between 0.594 and 0.596 GB).

6CiteSeer represents the academic citation dataset, containing approximately 4230 nodes, 10600 edges,
602 features, 6 classes, and an average node degree of 2.52, as defined in Section 3.3.3.2. Using the
GraphSAGE model defined in Section 3.3.2.2 for the node classification task.

65

Figure 28: Training GraphSAGE with CiteSeer - GPU Accelerated.

Source: The author(s).

In Figure 28, the execution of the same (SAGE-CiteSeer) scenario using both CPU
(host) and GPU (device) is observed, where it is possible to observe 43 HUP are visible
on the host and no HUP on the device. The critical execution period for the host are con-
centrated in the first half of the chart, while the device did no reach 10% of usage. The
x-axis represents epochs, while the y-axis represents the percentage of utilisation. The
consumption of both memories remained stable. In the right side of the figure, the con-
sumption of both main and device memories (in GB) during epoch execution is shown,
where a low change-over in the memory consumption can be noticed and a constant con-
sumption on the GPU’s memory (2.54 GB peak for the main memory and 1.14 GB for
GPU memory).

66

Figure 29: Training GraphSAGE with CoAuthors CS - CPU only.

Source: The author(s).

In Figure 29, the training of the GraphSAGE model with the CoAuthors dataset is
presented7, where it is possible to observe no points of high CPU utilisation. However,
it is important to emphasize that despite not reaching HUP, this test exhibited the longest
training time. In the second part of the figure, the consumption of main memory (in GB)
during epoch execution is shown, where a low change-over in memory consumption can
be noticed (between 1.487 and 1.505 GB) considering absolute values.

7CoAuthors (CS) represents the literature co-authored authors dataset, containing approximately 18000
nodes, 160000 edges, 6805 features, 15 classes, and an average node degree of 8.93, as defined in Sec-
tion 3.3.3.3. Using the GraphSAGE model defined in Section 3.3.2.1 for the node classification task.

67

Figure 30: Training GraphSAGE with CoAuthors CS - GPU Accelerated.

Source: The author(s).

In Figure 30, the execution of the same (SAGE-CoAuthors) scenario using both CPU
(host) and GPU (device) is observed, where it is possible to observe 21 HUP on the host
and 9 HUP on the device, the only test case to present HUP on both CPU and GPU. It is
possible to observe that while the host machine are at a HUP, the device consumption are
at a trough. In the right side of the figure, the consumption of both main and device mem-
ories (in GB) during epoch execution is shown, where a constant memory consumption
can be noticed (3 GB for the main memory and 7.5 GB for GPU memory) and reaching
the highest absolute values for the whole benchmarking.

4.3 Discussion

It was noted that inherent differences in models and datasets greatly influenced the
results. Training with the GraphSAGE model usually required more processing time (ex-
cept for the GPU-accelerated CiteSeer execution). However, it was possible to observe
that despite the longer processing time, training with the GraphSAGE model reduced high
utilisation points in 4 out of 6 cases. However, concerning GPU-accelerated execution,
the GraphSAGE model was the only one that exhibited high GPU utilisation points (in the
CoAuthors CS dataset). This can be explained by the greater complexity of the Graph-
SAGE network, which is capable of storing and utilising information from neighbouring
nodes to extract insights about the topology of a node. As presented in Section 3.3.2, the
GraphSage network has nearly twice as many parameters as the GCN network, which is
one of the inherent factors for the results presented, particularly regarding the increased
computational demands of this model. Indeed, this fact is also reflected in the study’s

68

higher values of main memory consumption.
In general terms, based on the result values (Table 5), it can be inferred that factors

contributing to high utilisation values include (1) the number of edges in the graph, (2)
the average degree of connectivity of nodes in the graph, and (3) the complexity of the
model used. Regarding training time, the overall graph size can also be mentioned in
addition to the abovementioned points. In all cases, GPU acceleration reduced the training
processing time; however, it also increased the processing load on the host machine in
many situations.

69

D
at

as
et

E
nv

ir
on

m
en

t
M

od
el

Tr
ai

ni
ng

Ti
m

e
(s

ec
)

C
PU

H
U

P
G

PU
H

U
P

M
ax

Va
l.

A
cc

.

A
m

az
on

C
om

pu
te

rs

C
PU

G
C

N
60

33
-

0.
77

3
G

PU
A

cc
el

er
at

ed
7

0
0

0.
84

7
C

PU
G

ra
ph

SA
G

E
22

8
8

-
0.

54
4

G
PU

A
cc

el
er

at
ed

24
.8

65
0

0.
35

3

C
ite

Se
er

C
PU

G
C

N
23

15
-

0.
95

4
G

PU
A

cc
el

er
at

ed
22

.8
64

0
0.

95
9

C
PU

G
ra

ph
SA

G
E

32
78

-
0.

95
4

G
PU

A
cc

el
er

at
ed

18
43

0
0.

95
3

C
oA

ut
ho

rs
C

S

C
PU

G
C

N
55

.7
14

-
0.

94
7

G
PU

A
cc

el
er

at
ed

25
.3

16
0

0.
94

2
C

PU
G

ra
ph

SA
G

E
10

52
0

-
0.

94
2

G
PU

A
cc

el
er

at
ed

38
.1

21
9

0.
94

7

Ta
bl

e
5:

A
gg

re
ga

te
d

of
E

xt
ra

ct
ed

R
es

ul
ts

-R
es

ou
rc

e
C

on
su

m
pt

io
n

in
Tr

ai
ni

ng
.

5 Conclusion and Future Work

This work reported the journey and challenges towards building a tool for creating,
processing, and visualising graphs. The ultimate goal of this study is to answer the fol-
lowing questions:

• (RQ1) What is the resource footprint in running Graph Neural Networks in a accel-
erated environment?

• (RQ2) What is the impact of choosing different well-known Models and Datasets
from the literature, considering variable node degrees and graph structures?

Chapter 1, was introduced the topic by presenting state-of-the-art examples that aimed
to build a user-end graph application, showing how a graph application can be represented
in both OLTP and OLAP pipelines. The work presented at da Silva et al. [19], reported
the step-by-step designing of a prototype that can extract, process, visualise, and analyse
graphs from Databooks in a web interface named GraphLED. Despite the true character
of the data used as motivation for the tool, the steps and techniques described here can be
applied in numerous other applications regardless of the area (related to RQ1).

Still, Chapter 1 mentions the main challenges encountered in developing GraphLED,
emphasising the scalability challenges. Were also reported the main limitations of the
tool and the challenges faced in overcoming the limitations of GraphLED, such as the
difficulty in scaling the tool, the lack of automatic graph detection, and others. In addi-
tion, the main techniques for scaling graph neural network training for graphs were also
mentioned, using horizontal and vertical scalability techniques as examples.

In Chapter 2, the main concepts capable of handling the problems encountered were
grouped and organised in a concise overview to clarify the next steps for the GraphLED
tool. In addition, in this chapter, we provide a complete introduction to Graph Neural Net-
works, their types, and how they can be explored to perform numerous activities related
to graph usage. Finally, we summarise the main advantages and disadvantages of using
these networks using robust state-of-art examples.

Chapter 3 defined a method for analysing GNN from a system performance perspec-
tive (related to RQ1), contrary to traditional evaluations focusing primarily on accuracy

71

analysis. Initially, the main frameworks capable of providing different techniques to opti-
mise GNN training were selected and evaluated. Next, these frameworks were classified
according to their applicability, relevance in the community, and the existence of intu-
itive APIs and documentation, among other parameters. Finally, the use of the USE
methodology was defined to evaluate the performance of these frameworks in different
test scenarios, parameterising attributes such as execution environment, model used, and
datasets. To obtain the results in their entirety, it is expected to extract values of Satu-
ration and Errors for the defined scenarios. Initially, only the PyG (PyTorch Geometric)
framework was used for evaluation. However, it was identified that different frameworks
have different ways of approaching scalability in their implementation.

Finishing with the selection of a single framework (PyTorch Geometric) due to the
arguments presented regarding its advantages over the others. Next, two convolutional
graph neural network models, GCN and GraphSAGE, were chosen. These models were
used for training the Amazon Computers, CiteSeer, and CoAuthors (CS) datasets (related
to RQ2) in different execution environments (CPU only and GPU-accelerated). From
this execution, hardware resource consumption values concerning each training epoch
were extracted (limited to 100). A significant processing time improvement was observed
when the GPU-accelerated environment was utilised (related to RQ1 and RQ2).

In da Silva et al. [19], were identified two possible points of evaluation for adding
value to the study and reducing bias: (1) a deeper performance analysis (benchmarking)
to identify all the bottlenecks in the tool, (2) a usability analysis with end users, to extract
the evaluation of the target audience regarding the usefulness of the tool, (3) thorough
analysis of Databooks using GraphLED to extract insights from the data to bring com-
petitive or operational advantage to the users. For example, one question to be answered
would be: “Out of a set of n Databooks processed by GraphLED, how many of them have
anomalous structural patterns?”. To address point (2), we aim to use one of the most com-
mon scales for analysing system usability: the Likert Scale [47] or the ISO 9241-11 [56].
To address the issue (3), some of our colleagues and co-authors of GraphLED are con-
ducting parallel work to extract knowledge from these data, from centrality calculations,
anomaly detection techniques and GNN models. None of the planned improvements for
the work in da Silva et al. [19] will be continued upon the completion of this thesis but
will instead be continued in subsequent jobs related to enhancing GraphLED.

As show in the results (Chapter 4), it can be observed that changing the execution en-
vironment of a ConvGNN, using GPU acceleration, results in a significant gain in training
time, as well as the elimination of processing saturation in a low-stress test environment
(related to RQ1).

During the development of this thesis, it was possible to observe that there are still
unlimited possibilities when it comes to benchmarking GNN. Due to their analytical na-
ture, most studies in this field are focused on achieving better accuracy and F1 values in

72

models. However, other areas of science can contribute to the evaluation of these neural
networks from different perspectives, such as resource consumption, parallelism tech-
niques, scalability, and more. It becomes feasible to study other types of neural networks,
such as RecGNN, STGNN, etc., as well as conduct more in-depth studies of existing tech-
niques, such as error data extraction, saturation, and others. Although not deeply explored
in this thesis, the study of different frameworks can also be promising because it is known
that frameworks use different implementations for their GNN usage APIs, thus potentially
directly impacting the performance of systems that rely on these implementations.

73

BIBLIOGRAPHY

[1] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón. Computing graph
neural networks: A survey from algorithms to accelerators. ACM Computing Sur-

veys (CSUR), 54(9):1–38, 2021.

[2] N. Agarwal, H. Liu, L. Tang, and P. S. Yu. Identifying the influential bloggers in a
community. In Proceedings of the 2008 international conference on web search and

data mining, pages 207–218, 2008.

[3] I. Ahmad, M. U. Akhtar, S. Noor, and A. Shahnaz. Missing link prediction using
common neighbor and centrality based parameterized algorithm. Scientific reports,
10(1):1–9, 2020.

[4] G. S. Almasi and A. Gottlieb. Highly parallel computing. Benjamin-Cummings
Publishing Co., Inc., 1994.

[5] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint com-

puter conference, pages 483–485, 1967.

[6] R. Amor and M. Clift. Documents as an enabling mechanism for concurrent engi-
neering in the construction industry. In 1st international conference on Concurrent

Engineering in Construction, CEC, volume 97, 1997.

[7] R. R. Aragao. Using Network Theory to Manage Knowledge From Unstructured

Data in Construction Projects: Application to a Collaborative Analysis of the En-

ergy Consumption in the Construction of Oil and Gas Facilities. PhD thesis, Uni-
versity of Toronto (Canada), 2018.

[8] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Ma-
linowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational induc-
tive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

74

[9] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny. Graph software devel-
opment and performance on the mta-2 and eldorado. In 48th Cray Users Group

Meeting, Switzerland, 2006.

[10] D. Blakely, J. Lanchantin, and Y. Qi. Time and space complexity of graph convolu-
tional networks. Accessed on: Dec, 31, 2021.

[11] G. E. Blelloch. Vector models for data-parallel computing, volume 2. Citeseer,
1990.

[12] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[13] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph representations.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[14] M. Capotă, T. Hegeman, A. Iosup, A. Prat-Pérez, O. Erling, and P. Boncz. Grapha-
lytics: A big data benchmark for graph-processing platforms. In Proceedings of the

GRADES’15, pages 1–6. ACM New York, NY, USA, 2015.

[15] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology.
ACM Sigmod record, 26(1):65–74, 1997.

[16] J. Chen, J. Zhu, and L. Song. Stochastic training of graph convolutional networks
with variance reduction. arXiv preprint arXiv:1710.10568, 2017.

[17] J. Chen, T. Ma, and C. Xiao. Fastgcn: fast learning with graph convolutional net-
works via importance sampling. arXiv preprint arXiv:1801.10247, 2018.

[18] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge dis-

covery & data mining, pages 257–266, 2019.

[19] V. T. da Silva, L. d. A. M. Ribeiro, W. B. de Lemos, S. S. d. C. Botelho, M. R. Pias,
et al. Graphled: A graph-based approach to process and visualise linked engineering
documents. arXiv preprint arXiv:2302.08905, 2023.

[20] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[21] E. A. Dudziak. Arquivos e documentos empresariais: da organização cotidiana à
gestão eficiente. Revista de Gestão e Secretariado, 1(1):90–110, 2010.

75

[22] E. Dumbill. A revolution that will transform how we live, work, and think: An
interview with the authors of big data. Big Data, 1(2), 2013.

[23] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson. Bench-
marking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

[24] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[25] C. Gallicchio and A. Micheli. Graph echo state networks. In The 2010 international

joint conference on neural networks (IJCNN), pages 1–8. IEEE, 2010.

[26] L. Getoor and C. P. Diehl. Link mining: a survey. Acm Sigkdd Explorations Newslet-

ter, 7(2):3–12, 2005.

[27] C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: An automatic citation
indexing system. In Proceedings of the third ACM conference on Digital libraries,
pages 89–98, 1998.

[28] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In 10th {USENIX} Sympo-

sium on Operating Systems Design and Implementation ({OSDI} 12), pages 17–30,
2012.

[29] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph do-
mains. In Proceedings. 2005 IEEE International Joint Conference on Neural Net-

works, 2005., volume 2, pages 729–734. IEEE, 2005.

[30] B. Gregg. Thinking methodically about performance. Communications of the ACM,
56(2):45–51, 2013.

[31] D. Gregor and A. Lumsdaine. The parallel bgl: A generic library for distributed
graph computations. Parallel Object-Oriented Scientific Computing (POOSC), 2:
1–18, 2005.

[32] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How
well do graph-processing platforms perform? an empirical performance evaluation
and analysis. In 2014 IEEE 28th International Parallel and Distributed Processing

Symposium, pages 395–404. IEEE, 2014.

[33] Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. Benchmark-
ing graph-processing platforms: A vision. In Proceedings of the 5th ACM/SPEC

international conference on Performance engineering, pages 289–292, 2014.

76

[34] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[35] M. Han and K. Daudjee. Giraph unchained: Barrierless asynchronous parallel ex-
ecution in pregel-like graph processing systems. Proceedings of the VLDB Endow-

ment, 8(9):950–961, 2015.

[36] E. Hovy, R. Navigli, and S. P. Ponzetto. Collaboratively built semi-structured content
and artificial intelligence: The story so far. Artificial Intelligence, 194:2–27, 2013.

[37] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V.
Le, Y. Wu, et al. Gpipe: Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing systems, 32, 2019.

[38] K. Hwang and N. Jotwani. Advanced computer architecture: parallelism, scalabil-

ity, programmability, volume 199. McGraw-Hill New York, 1993.

[39] J. JéJé. An introduction to parallel algorithms. Reading, MA: Addison-Wesley, 10:
133889, 1992.

[40] M. S. Kettouch. A new approach for interlinking and integrating semi-structured

and linked data. PhD thesis, Anglia Ruskin University, 2017.

[41] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. Mizan:
a system for dynamic load balancing in large-scale graph processing. In Proceedings

of the 8th ACM European conference on computer systems, pages 169–182, 2013.

[42] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[43] F. G. Lafetá, C. F. de Oliveira Barros, and P. d. O. C. D. Leal. Projetos com-
plexos: estudo de caso sobre a complexidade dos projetos de engenharia de
telecomunicações em uma empresa do setor de óleo e gás. Gestão e Projetos: GeP,
7(1):41–55, 2016.

[44] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Transactions on computers, 100(1):
24–35, 1987.

[45] G. Li, M. Müller, B. Ghanem, and V. Koltun. Training graph neural networks with
1000 layers. In International conference on machine learning, pages 6437–6449.
PMLR, 2021.

[46] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

77

[47] R. Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

[48] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski. Pregel: a system for large-scale graph processing. In Proceedings of the

2010 ACM SIGMOD International Conference on Management of data, pages 135–
146, 2010.

[49] C. H. Marcondes. Tecnologias da informação e impacto na formação do profissional
da informação. Transinformação, 11(3), 2012.

[50] R. C. Martin. Agile software development: principles, patterns, and practices. Pren-
tice Hall, 2002.

[51] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel. Image-based recommen-
dations on styles and substitutes. In Proceedings of the 38th international ACM

SIGIR conference on research and development in information retrieval, pages 43–
52, 2015.

[52] J. L. McClelland, D. E. Rumelhart, P. R. Group, et al. Parallel distributed process-

ing, volume 2. MIT press Cambridge, MA, 1986.

[53] Memgraph. Graph classification algorithm. https://memgraph.com/

docs/mage/algorithms/machine-learning-graph-analytics/

graph-classification-algorithm, 2023. Accessed: 2023-06-05.

[54] S. Newman. Building microservices: designing fine-grained systems. ” O’Reilly
Media, Inc.”, 2015.

[55] G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran, Á. López Garcı́a, I. Heredia,
P. Malı́k, and L. Hluchỳ. Machine learning and deep learning frameworks and
libraries for large-scale data mining: a survey. Artificial Intelligence Review, 52:
77–124, 2019.

[56] I. S. . E. of Human-System Interaction (Subcommittee). Ergonomic Requirements

for Office Work with Visual Display Terminals (VDTs).: Guidance on Usability.
International Organization for Standardization, 1998.

[57] P. Ongsulee. Artificial intelligence, machine learning and deep learning. In 2017

15th international conference on ICT and knowledge engineering (ICT&KE), pages
1–6. IEEE, 2017.

[58] C. Pizzuti. Ga-net: A genetic algorithm for community detection in social networks.
In Parallel Problem Solving from Nature–PPSN X: 10th International Conference,

https://memgraph.com/docs/mage/algorithms/machine-learning-graph-analytics/graph-classification-algorithm
https://memgraph.com/docs/mage/algorithms/machine-learning-graph-analytics/graph-classification-algorithm
https://memgraph.com/docs/mage/algorithms/machine-learning-graph-analytics/graph-classification-algorithm

78

Dortmund, Germany, September 13-17, 2008. Proceedings 10, pages 1081–1090.
Springer, 2008.

[59] A. Rajaraman and J. D. Ullman. Mining of massive datasets. Cambridge University
Press, 2011.

[60] I. Robinson, J. Webber, and E. Eifrem. Graph databases. ” O’Reilly Media, Inc.”,
2013.

[61] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[62] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective
classification in network data. AI magazine, 29(3):93–93, 2008.

[63] E. Seo, P. Mohapatra, and T. Abdelzaher. Identifying rumors and their sources in
social networks. In Ground/air multisensor interoperability, integration, and net-

working for persistent ISR III, volume 8389, pages 417–429. SPIE, 2012.

[64] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of graph neural
network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[65] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S. Hua. Graph processing
on GPUs: a survey. ACM Computing Surveys, 50(6):81:1–81:??, Jan. 2018. ISSN
0360-0300 (print), 1557-7341 (electronic). doi: https://doi.org/10.1145/3128571.

[66] J. Siek, L.-Q. Lee, A. Lumsdaine, et al. The boost graph library. Pearson India,
2002.

[67] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximiza-
tion. arXiv preprint arXiv:1908.01000, 2019.

[68] I. Szulc, K. Stencel, and P. Wiśniewski. Using genetic algorithms to optimize re-
dundant data. In International Conference: Beyond Databases, Architectures and

Structures, pages 165–176. Springer, 2017.

[69] J. Tan and X. Fu. Addressing hardware reliability challenges in general-purpose
gpus. Adv. GPU Res. Pract, pages 649–705, 2017.

[70] V. Telles da Silva, L. d. A. Martins Ribeiro, W. Borges de Lemos, S. Silva da
Costa Botelho, N. Lopes Duarte Filho, and M. R. Pias. Graphled: A graph-based
approach to process and visualise linked engineering documents. arXiv e-prints,
pages arXiv–2302, 2023.

79

[71] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop yarn: Yet another
resource negotiator. In Proceedings of the 4th annual Symposium on Cloud Com-

puting, pages 1–16, 2013.

[72] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

[73] J. Von Neumann. The principles of large-scale computing machines. Annals of the

History of Computing, 3(3):263–273, 1981.

[74] J. Von Neumann, A. W. Burks, et al. Theory of self-reproducing automata. IEEE

Transactions on Neural Networks, 5(1):3–14, 1966.

[75] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In Proceedings

of the 22nd ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 1225–1234, 2016.

[76] M. Y. Wang. Deep graph library: Towards efficient and scalable deep learning on
graphs. In ICLR workshop on representation learning on graphs and manifolds,
2019.

[77] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel, and
T. Langer. A compact review of molecular property prediction with graph neural
networks. Drug Discovery Today: Technologies, 37:1–12, 2020.

[78] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang. Graph wavenet for deep spatial-
temporal graph modeling. arXiv preprint arXiv:1906.00121, 2019.

[79] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive sur-
vey on graph neural networks. IEEE transactions on neural networks and learning

systems, 32(1):4–24, 2020.

[80] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx: A resilient dis-
tributed graph system on spark. In First international workshop on graph data man-

agement experiences and systems, pages 1–6, 2013.

[81] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In Proceedings of the AAAI conference on artifi-

cial intelligence, volume 32, 2018.

[82] C. Yang, A. Buluç, and J. D. Owens. Design principles for sparse matrix multipli-
cation on the gpu. In Euro-Par 2018: Parallel Processing: 24th International Con-

ference on Parallel and Distributed Computing, Turin, Italy, August 27-31, 2018,

Proceedings, pages 672–687. Springer, 2018.

80

[83] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and U. Catalyurek.
A scalable distributed parallel breadth-first search algorithm on bluegene/l. In
SC’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, pages
25–25. IEEE, 2005.

[84] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

[85] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al. Spark:
Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

[86] S. Zheng, Z. Zhu, X. Zhang, Z. Liu, J. Cheng, and Y. Zhao. Distribution-induced
bidirectional generative adversarial network for graph representation learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, pages 7224–7233, 2020.

A GraphLED: A graph-based approach to process and
visualise linked engineering documents

In the work presented by da Silva et al. [19] we introduced GraphLED, a system
tasked with data processing, graph-based modeling, and colorful visualization of re-
lated documents. It was submitted to the ArXiv Repository in february 2023 (DOI:

https://doi.org/10.48550/arXiv.2302.08905) [70].
The graph-based approach ensures improved understanding of linked information, as

the graph structure offers a promising tool for modeling the underlying data properties
of engineering documents. This work has the potential to benefit the industry by im-
proving the reliability and resilience of industrial production systems through automated
summaries of large quantities of documents and their linkages.

Roles: Lucas de A. M. Ribeiro: Conceptualization, Programming, Simulations, Writ-
ing - original draft, Writing - review and editing; Vanessa T. da Silva: Conceptualization,
Programming, Analysis, Writing - original draft, Writing - review and editing; Concep-
tualization, Programming, Simulations, Writing - original draft, Writing - review and
editing; Marcelo R. Pias: Conceptualization, Programming, Analysis, Writing - original
draft, Writing - review and editing; Sı́lvia S. da C. Botelho: Writing - review and editing;
Nelson L. D. Filho: Writing - review and editing.

	Introduction
	Graph Neural Networks
	Graph Pipeline
	Bottlenecks
	Frameworks

	The Case Study: Graphs for Processing Linked Engineering Documents
	Previous Results
	Problems Encountered

	Research Questions and Objectives
	Specific Objectives

	Background and Related Work
	Definitions
	Graph Neural Networks
	Node Classification
	Graph Classification
	Link Prediction
	Recurrent Graph Neural Networks
	Graph Convolutional Neural Networks
	Graph Autoencoders
	Spatial-Temporal Graph Neural Networks
	Data Layout
	Memory Access Pattern
	Graph Algorithms
	Graph Processing

	The Scalability Challenge
	Graph Processing on GPUs
	Scalability on GPUs
	Scaling Neural Networks

	Related Work

	Evaluation Methodology
	Frameworks Selection and Classification
	Profiling Resources
	Creating the Test Cases
	Execution Environment
	Models
	Datasets

	Results
	GCN
	GraphSAGE
	Discussion

	Conclusion and Future Work
	Bibliography
	GraphLED: A graph-based approach to process and visualise linked engineering documents

