
UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG

CENTRO DE CIÊNCIAS COMPUTACIONAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CURSO DE MESTRADO EM ENGENHARIA DE COMPUTAÇÃO

Master Dissertation

The not-so-easy task of taking heavy-lift ML models to
the edge: a performance-watt perspective

Lucas Caetano Meireles Pereira

Master Disstertation presented to the Programa de
Pós-Graduação em Computação of the Universi-
dade Federal do Rio Grande - FURG, in partial ful-
fillment of the requirements for the degree: Master
in Computer Engineering

Advisor: Prof. Dr. Nelson Lopes Duarte Filho
Co-advisores: Prof. Dr. Marcelo de Rita Pias

Prof. Dr. Paulo Lilles Jorge Drews Junior

Rio Grande, 2023

Ficha Catalográfica

P436t Pereira, Lucas Caetano Meireles.

 The not-so-easy task of taking heavy-lift ML models to the edge: a

performance-watt perspective / Lucas Caetano Meireles Pereira. –

2023.

 93 f.

 Dissertação (mestrado) – Universidade Federal do Rio Grande –

FURG, Programa de Pós-Graduação em Computação, Rio

Grande/RS, 2023.

 Orientador: Dr. Nelson Lopes Duarte Filho.

 Coorientador: Dr. Marcelo de Rita Pias.

 Coorientador: Dr. Paulo Lilles Jorge Drews Junior.

 1. Eficiência energética 2. Computação de borda 3. Inteligência

artificial 4. Fitoplâncton I. Duarte Filho, Nelson Lopes II. Pias,

Marcelo de Rita III. Drews Junior, Paulo Lilles Jorge IV. Título.

CDU 004

Catalogação na Fonte: Bibliotecário José Paulo dos Santos CRB 10/2344

Master Dissertation

The not-so-easy task of taking heavy-lift ML models to
the edge: a performance-watt perspective

Lucas Caetano Meireles Pereira

Banca examinadora:

Universidade Federal do Rio Grande
Centro de Ciências Computacionais

Programa de Pós-Graduação em Computação
Curso de Mestrado em Engenharia de Computação

DISSERTAÇÃO DE MESTRADO

The not-so-easy task of taking heavy-lift ML models to the edge: a
performance-watt perspective

Lucas Caetano Meireles Pereira

Banca examinadora:

__
Prof. Dr. Helio Crestana Guardia (UFSCar)

__
Prof. Dr. Eduardo Nunes Borges (FURG)

__
Prof. Dr. Nelson Lopes Duarte Filho (FURG)
Orientador

Assinado digitalmente por Eduardo
Nunes Borges:00057035067
ND: CN=Eduardo Nunes
Borges:00057035067, OU=FURG -
Universidade Federal do Rio Grande,
O=ICPEdu, C=BR
Razão:
https://pessoal.icpedu.rnp.br/public/veri
ficar-assinatura
Localização: Rio Grande - RS
Data: 2023.01.29 18:46:40-03'00'
Foxit PDF Reader Versão: 12.1.0

Eduardo
Nunes

Borges:0005
7035067

ACKNOWLEDGEMENTS

First, I would like to express my deep gratitude to my advisers, for their patient gui-
dance, for the criticism of my work and for the tips in writing my dissertation. Second,
I extend my acknowledgement to the entire ASTRAL project team. We all work to-
gether, aiming for a world where technology is where it is needed. In particular, I want
to thank three members of this wonderful team. Bruna Guterres, Amanda Mendes, and
Kaue Sbrina, thank you for all your help, support and companionship during these months
when we worked closely together.

Also, I want to thank my love, Leticia. Your love and encouragement allow me to
walk this path and complete this cycle. I would never finish my work without you by my
side.

RESUMO

PEREIRA, Lucas Caetano Meireles. The not-so-easy task of taking heavy-lift ML
models to the edge: a performance-watt perspective. 2023. 92 f. Disstertation
(Master) – Programa de Pós-Graduação em Computação. Universidade Federal do Rio
Grande - FURG, Rio Grande.

Edge Computing é um novo paradigma de desenvolvimento que traz poder computa-
cional para a borda da rede e para o usuário final, por meio de serviços inteligentes inova-
dores. O paradigma permite que aplicativos sensı́veis à latência sejam colocados onde os
dados são criados, com satisfação assim a sobrecarga de comunicação e com a segurança,
a mobilidade e o consumo de energia. Existe uma conexão de aplicações que se bene-
ficiam desse tipo de processamento. Em particular a classificação de imagens no nı́vel
microscópico. A escala e magnitude dos objetos para segmentar, detectar e classificar
são muito desafiadoras, com dados coletados usando ordem de grandeza em extensão. O
processamento de dados necessário é intenso e a lista de desejos dos usuários finais nesse
espaço inclui ferramentas e soluções que cabem em um dispositivo limitado. Levar mo-
delos de classificação inicialmente construı́dos na nuvem para dispositivos de análise de
imagem baseados em mesa é uma tarefa difı́cil para desenvolvedores. Este trabalho ana-
lisa as limitações de desempenho e os requisitos de consumo de energia na incorporação
de modelos de classificação, baseados em aprendizado profundo, em um dispositivo re-
presentativo de Edge Computing. Particularmente, o conjunto de dados e os modelos de
levantamento pesado exploratório no estudo de caso são imagens de fitoplâncton para de-
tectar a antecipação de algas nocivas (HAB) na aquicultura nos iniciais. O trabalho utiliza
modelos de aprendizado profundo treinados para classificar de fitoplâncton e os implan-
tar na borda. O modelo base, aprimorado em uma forma base juntamente com opções
otimizadas, é mantido a uma série de experimentos de estresse do sistema. O perfil de
consumo de energia e desempenho ajuda a entender a limitação do sistema e seu impacto
na tarefa de classificar a imagem de grau microscópico.

Palavras-chave: Power Efficiency, Edge Computing, Artificial Intelligence, Phytoplank-
ton.

ABSTRACT

PEREIRA, Lucas Caetano Meireles. The not-so-easy task of taking heavy-lift ML
models to the edge: a performance-watt perspective. 2023. 92 f. Thesis (Master) –
Programa de Pós-Graduação em Computação. Universidade Federal do Rio Grande -
FURG, Rio Grande.

Edge computing is a new development paradigm that brings computational power to
the network edge through novel intelligent end-user services. It allows latency-sensitive
applications to be placed where the data is created, thus reducing communication over-
head and improving security, mobility and power consumption. There is a plethora of
applications benefiting from this type of processing. Of particular interest is emerging
edge-based image classification at the microscopic level. The scale and magnitude of the
objects to segment, detect and classify are very challenging, with data collected using or-
der of magnitude in magnification. The required data processing is intense, and the wish
list of end-users in this space includes tools and solutions that fit into a small device. Tak-
ing heavy-lift classification models initially built in the cloud to desk-based image analy-
sis devices is a hard job for application developers. This work looks at the performance
limitations and energy consumption footprint in embedding deep learning classification
models in a representative edge computing device. Particularly, the dataset and heavy-
lift models explored in the case study are phytoplankton images to detect Harmful Algae
Blooms (HAB) in aquaculture at early stages. The work takes a deep learning models
trained for phytoplankton classification and deploys it at the edge. The embedded model,
deployed in a base form alongside optimised options, is submitted to a series of system
stress experiments. The performance and power consumption profiling help understand
system limitations and their impact on the microscopic grade image classification task.

Keywords: Phytoplankton, Light-scattering, Fluorescence, Flow Cytometry .

LIST OF FIGURES

Figure 1 Hierarchical View: Artificial Intelligence, Machine Learning and
Deep learning. 16

Figure 2 Deep Neural Network (DNN): typical structure of neurons organised
into interconnected layers. Several hidden layers are typically used
in DNN architectures. 19

Figure 3 Data Science to Edge Deployment Workflow. 26

Figure 4 FlowCAM Block Diagram [40]. Computational components - hard-
ware and software) are in red blocks. Other components in represen-
ted in blue. 31

Figure 5 The FlowCytoBot system and this external protection tube. 32

Figure 6 PlanktonScope Software Flow[48]. 34

Figure 7 NVIDIA Jetson NANO architecture, highlighting each component in
the carrier board. [62] . 36

Figure 8 TensorRT optimisation steps [56] 39

Figure 9 Steps taken in a typical flow: ML image classification task [6]. 41

Figure 10 Hardware/Software stack hierarchy for Neural Network inference
proposed in Shafi et al. [56]. Layer marked (Inference Engines) will
be explored in this dissertation. 43

Figure 11 Genus of interest and countries interested in each one. [62] 49

Figure 12 Phytoplankton image examples (50+ times magnification). High
intra-class variability, inter-class similarity and imbalanced scenarios
bring issues for the practical identification of phytoplankton organisms. 50

Figure 13 MobileNet: evolution of separable convolution blocks. The dia-
gonally hatched texture indicates layers that do not contain non-
linearities [52]. 51

Figure 14 Inception V3 model architecture: schematic view [62] 52

Figure 15 Jetson-Stats interface. 53

Figure 16 Workflow of ASTRAL phytoplankton classification application. This
workflow is typical in many other image classification applications. . 55

Figure 17 (a) Jetson Nano platform and (b) the experimental system setup. . . . 56

Figure 18 TensorRT: top level view for Optimisation and Quantisation proces-
ses. The system imports the cloud-based model trained on the integra-
ted dataset in a high-resource environment. The TensoRT provides an
optimised inference engine as the output for the selected quantisation
range, namely TRT-FP16 and TRT-FP32. 56

Figure 19 Image throughput results in FPS across all models and versions. Each
section is a different model. In sequential order: NASNetMobile,
MobileNet, VGG and Inception. Inside the sections, versions are
organised as follows: base version, TRT-FP32 and TRT-FP16 versi-
ons. As the VGG and the Inception models could not be successfully
tested in the Jetson NANO, those sections have empty gaps for the
optimised version results. 63

Figure 20 Power consumption: MobileNetV2 on the Jetson NANO platform.
The y axis is the instantaneous power (in milliWatts); x axis is the
time (in samples)). 65

Figure 21 Power consumption: Jetson Nano System running the MobileNetV2
with TensorRT FP32. The y axis is the instantaneous power (in milli
Watts); x axis is the time (in samples). 66

Figure 22 Power consumption: Jetson Nano System running the MobileNetV2
with TensorRT FP16. The y axis is the instantaneous power (in milli
Watts); x axis is the time (in samples). 67

Figure 23 Power consumption: NASNetMobile on the Jetson Nano platform.
The y axis is the instantaneous power (in milli Watts); x axis is the
time (in samples)). 67

Figure 24 Power consumption: Jetson Nano System running the NASNetMo-
bile with TensorRT FP32. The y axis is the instantaneous power (in
milli Watts); x axis is the time (in samples). 68

Figure 25 Power consumption: Jetson Nano System running the NASNetMo-
bile with TensorRT FP16. The y axis is the instantaneous power (in
milli Watts); x axis is the time (in samples). 69

Figure 26 Power consumption: Jetson NANO System running the VGG. The y

axis is the instantaneous power (in milliWatts); x axis is the time (in
samples). 70

Figure 27 Power consumption: Jetson NANO System running the Inception.
The y axis is the instantaneous power (in milliWatts); x axis is the
time (in samples). 70

Figure 28 Memory consumption: MobileNetV2 and variations on the Jetson
NANO platform. First, at the top is the base version, followed by
TRT-FP32 and TRT-FP16. The y axis of each graph is memory usage
(in MegaBytes); x axis is the time (in samples)). 73

Figure 29 Memory consumption: NASNetMobile and variations on the Jetson
NANO platform. First, at the top is the base version, followed by
TRT-FP32 and TRT-FP16 versions. The y axis of each graph is me-
mory usage (in MegaBytes); x axis is the time (in samples)). 74

Figure 30 Memory consumption: VGG on the Jetson NANO platform. The y

axis is memory used (in MegaBytes); x axis is the time (in samples)). 75
Figure 31 Memory consumption: Inception on the Jetson NANO platform. The

y axis is memory spend (in MegaBytes); x axis is the time (in sam-
ples)). 75

LIST OF TABLES

Table 1 Review summary of devices. 35
Table 2 NVIDIA JETSON Nano Specifications 37

Table 3 Accuracy of each model and its variations. 61
Table 4 Coefficient gain of model’s variations (successfully completed). . . . 64
Table 5 Average power consumption in each step across all experiments. The

columns report on each algorithm step of the model version as fol-
lows: (1) Loading Model, (2) Extracting Infer Engine & Returning
Batch, (3) Warm Up Rounds and(4) Real Rounds. The last column
is the average power consumption in the experiment as a whole. . . . 71

Table 6 Results of peak Memory usage across all models. 75
Table 7 Average CPU and GPU usage. Columns are CPU cores and device

GPU. 77
Table 8 Power Consuption Results of the MobileNetV2 model and variations. 78
Table 9 Power Consumption forthe NASNetMobile model and variants. . . . 79
Table 10 Power Consumption: VGG and Inception. 79

LIST OF ABBREVIATIONS AND ACRONYMS

HAB Harmful Algae Bloon

IoT Internet of Things

AI Artificial Inteligence

ML Machine Learning

DL Deep Learning

NN Neural Network

ANN Artificial Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

CNN Neural Network

RNN Recurrent Neural Network

GAN Generative Adversial Network

ReLu Rectified Linear Units

FC Flow Cytometry

IFC Imaging Flow Cytometry

FPS Frames Per Second

ACC Accuracy

TRT-FP32 TensorRT Floatpoint 32 Bits

TRT-FP16 TensorRT Floatpoint 16 Bits

SUMMARY

1 Introduction 14
1.1 Artificial Intelligence . 16
1.2 Edge Computing . 20
1.2.1 Edge Intelligence . 22
1.2.2 Federated Learning . 23
1.3 The Case Study: Edge Computing for Water Quality Management . . . 24
1.4 Data Science to Edge Deployment . 25
1.5 Research Questions and Objectives . 26
1.5.1 Aim . 27
1.5.2 Specific Objectives . 27

2 Background and Related Work 29
2.1 Use Case Context, Traditional Standalone Devices 29
2.1.1 FlowCam: manual and visual analysis 31
2.1.2 FlowCytobot: in-situ applications . 32
2.1.3 FlowSight: from biomedical to marine applications 33
2.1.4 PlanktonScope: A call for low-cost, community-based device 33
2.2 AI Edge Devices: Beyond Traditional Devices 35
2.2.1 Jetson NANO Plataform . 36
2.2.2 Model Optimisation . 37
2.3 Related Work . 40

3 Evaluation Methodology 47
3.1 System Profiling to the Transition Challenge 47
3.2 Case Study: Phytoplankton Dataset . 49
3.3 Classifier Models . 50
3.3.1 MobileNET V2 . 51
3.3.2 NASNet Mobile . 51
3.3.3 Inception V3 . 52
3.3.4 VGG . 53

3.4 Logger . 54
3.5 Experimental Design . 54
3.5.1 System Setup . 55
3.5.2 Experiments . 57
3.5.3 Performance and Energy Metrics . 58

4 Results and Discussion 61
4.1 Accuracy . 61
4.2 Image Throughput . 62
4.2.1 NASNetMobile . 63
4.2.2 MobileNET . 63
4.2.3 VGG and Inception . 63
4.3 Power Consumption Profile . 64
4.3.1 MobileNetV2 Base Model . 65
4.3.2 MobileNet TRT-FP32 . 66
4.3.3 MobileNet TRT-FP16 . 67
4.3.4 NASNetMobile Base Model . 67
4.3.5 NASNetMobile TRT-FP32 . 68
4.3.6 NASNetMobile TRT-FP16 . 69
4.3.7 VGG Base Model . 69
4.3.8 Inception Base Model . 70
4.4 Memory Consumption . 72
4.4.1 MobileNET . 73
4.4.2 NASNetMobile . 73
4.4.3 VGG . 74
4.4.4 Inception . 74
4.5 CPU and GPU usage . 76
4.6 Performance and Costs Analyses . 77
4.6.1 MobileNetV2 . 77
4.6.2 NASNetMobile . 78
4.6.3 VGG and Inception . 79
4.7 Key Findings . 81

5 Conclusion and Future Work 82

References 86

1 INTRODUCTION

The development of novel machine learning (ML) applications has followed the needs
of modern society. The increase in data volume and heterogeneous systems pushes com-
puting power to a new level. The evolution of ML-powered technologies has advanced in
gigantic steps recently [67]. Deep learning models are at the centre of such advancements.
Concurrent changes in embedded devices connected to the network and new requirements
in the Internet of Things (IoT) create the need for new computational paradigms. On one
side, Cloud Computing has a host-centric perspective, with most services present at the
network core. And it processes all requests from the network centre to the edge, where
many resource-constrained IoT devices are deployed. Although useful in its own right,
the cloud approach could be more optimal when complying with service level agreements
of real-time, privacy-first and low-power end-user services [10]. On the other side, edge
computing emerges as a better strategy to collect and process data (entirely or partially) at
the device where it is created. This improves performance and power consumption, avoi-
ding unnecessary costly data communication transfer for data processing. It also enhances
where Cloud Computing needs the most, latency, privacy, and proximity to the end user.

Artificial Intelligence (AI) applications have grown in recent years, both in num-
ber and complexity [52, 12, 71, 55]. As a result, more data is available for advanced
big data processing to produce timely and relevant insights. Techniques derived from
these concepts are increasingly used for business, healthcare, military, and the industry
[33, 57, 42, 16]. For applications in these fields and many others, it is crucial to analyse
available data and provide valuable insights in the form of accurate predictions. And
as technology improves, the role of artificial intelligence in society expands. In this re-
gard, the significant part of artificial intelligence, machine learning and deep learning
is booming. More specifically, deep learning has experienced the most remarkable bre-
akthroughs among many AI subareas [49]. Deep Neural Networks (DNNs), including
canonical forms of Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs) and Generative Adversarial Networks (GANs), have been explored in practi-
cal deployments, including autonomous driving, voice assistants, predictive maintenance,
and many others.

15

Edge computing brings the processing power and storage closer to the data source
at the end-user device [53]. This feature allows for fast data processing and real-time
response time [30]. Edge devices come in different shapes, sizes, and capacities. In a more
traditional context, a router which connects public networks to the internet is an example
of an edge computing device. In addition, specialised edge computing devices exist,
including the Internet of Things (IoT), Industrial IoT, robots, and intelligent machines.
Such edge devices can achieve a broad range of functions that leverage the communication
network capabilities to lower the power consumption overhead while sustaining real-time
performance (i.e. performance-watt). The edge computing application communicates
still over the internet to the services running on a cloud server. This way, it builds a
system where processing power is accessible from everywhere via the web [50]. For
instance, an autonomous vehicle that provides entry to a cloud platform through digital
twin technology or a network capitalises on the edge-cloud ubiquitous connection.

Edge devices have grown in popularity, reaching many industrial applications, inclu-
ding precision agriculture and aquaculture, high-value manufacturing, and home auto-
mation. In addition, as we expand the data availability, machine learning models can
solve very specific yet practical real-world tasks. For example, the digital twinning in the
upcoming Industry 5.0 [4] is tasked with processing data to boost innovation towards sus-
tainable production that obeys the planet’s limits. As planetary twins scale up, increased
growth of IoT sensors will collect substantial amounts of unstructured data (e.g. audio
signals, video footages, sensor time series). To make sense of this data promptly, edge-
device twins can deliver expected outcomes in climate-resilient production applications.

Technology-driven sustainable agriculture and aquaculture are compelling applicati-
ons for edge device computing. Such applications require data integration, edge proces-
sing and embedded machine learning as part of a strategy to deploy low-cost, real-time
digital twin sensory systems. Aquaculture consists of farming aquatic organisms, inclu-
ding fish, molluscs, crustaceans, and aquatic plants. The farming process implies a degree
of real-time control and actuation to enhance production, such as water quality control,
uniform stocking, feeding, protection from predating, and disease prevention [18]. Cli-
mate change is creating environmental conditions for the worldwide surge in harmful
algal blooms (HABs) [68]. Such harmful phytoplankton biomass seriously impacts aqua-
culture with undesirable events of oxygen depletion. It might lead to the mortality of
aquatic organisms in uncontrolled scenarios. For instance, intense aquaculture farming
can face production loss in up to 30 minutes when no mitigation action is taken.

Edge computing can contribute to building a robust Climate-Ocean-Food value chain,
linking expected environmental risks to cost-efficiency and best practices of aquaculture
production and food safety (Industry 5.0). Early HAB detection is essential to react and
intervene in the aquaculture process. However, state-of-the-art methods rely on late de-
cisions based on the cloud-based processing of satellite images. Providing reliable edge-

16

based phytoplankton monitoring contributes towards climate-resilient solutions that com-
prise benchtop and desk-based image analysers equipped with self-contained ML models
capable of producing image classification results within seconds (i.e., just the time for an
inference).

Edge computing benefits a considerable number of other applications as well. Resear-
chers and technology developers embrace challenges in creating machine learning models
in the cloud and attempting to deploy such models into edge computing devices. The se-
vere resource constraints affect data processing, memory usage, communication, and the
power duty cycle. Developers should follow guidelines for deploying models informed by
edge device system limitations. Considerable overhead (i.e. ”high AI tax”) on the overall
power consumption [6] is expected.

1.1 Artificial Intelligence

AI is the crucial aspect that motivates edge processing capabilities to enable emer-
ging applications. For simplicity, we define artificial intelligence as a computer science
branch focused on bestowing human-like intelligence on machines. The primary goal of
AI is to develop autonomous machines that can think and act like humans, perceiving
the environment and taking actions to maximise the chance of success in some goal [46].
These machines can mimic human behaviour (to some extent) and perform tasks through
learning and problem-solving capabilities. According to Nilsson and Nilsson [43] AI is
related to the intelligent performance of artefacts. Most AI systems simulate natural in-
telligence to solve complex problems. However, this should be considered with a pinch

of salt because the superhuman, singularity type of narrative is always dangerous and can
easily disconnect from reality. Because of its application-specific goal, we argue that edge
computing specificity reassures the down-to-earth AI rather than the more science-fiction
view portrayed by many media venues targeting the general public members.

Artificial Intelligence

Machine Learning

Deep Learning

Ability of a machine to exert
intelligent human behavior.

AI driven application able to
self improve from learning.

ML application based on deep
neural nets. It improves trough

model training

Figure 1: Hierarchical View: Artificial Intelligence, Machine Learning and Deep learning.

Machine Learning is an approach to materialise AI in practical applications. Accor-

17

ding to Arthur Samuel in 1959, it gives ”computers the ability to learn without being
explicitly programmed.”[41]. It consists of using algorithms to analyse data, learn from it
and predict or decide something in the world. Instead of manually writing sequences of
software code with a specific set of instructions (a.k.a rules) to perform a particular task,
the machine is ”trained”with large volumes of data and algorithms that give it the ability
to self-learn the rules needed to complete a task.

ML is used in data pattern recognition and prediction as a computational tool for data
analysis. It is employed mainly in computational routines where building and program-
ming explicit algorithms with good performance are hard, slow or often intractable. ML
requires complex math and powerful algorithms to achieve the desired functions and re-
sults. It also needs access to vast amounts of data (both structured and unstructured) as
input for learning to predict future scenarios. Traditionally, the training of the ML models
relies on large amounts of data. As we provide more data samples from the target data
distribution, the model improves its generalisation capabilities to the entire distribution.
An ML model training component tries to fit its internal parameters to the data provided
by iterating over and over to minimise an error objective function. The optimisation ob-
jective in a typical supervised learning classification is the difference between the model’s
output (predictions) and expected values (ground truth).

There are four types of standard machine learning algorithms: unsupervised, supervi-
sed, semi-supervised, and reinforcement learning [20]. Two of the most widely adopted
methods are supervised learning and unsupervised learning. Hence, most machine le-
arning is supervised learning, followed by unsupervised learning. Semi-supervised and
reinforcement learning are two other approaches that have gathered pace in the last few
years, fuelled by autonomous systems learning [46].

• Supervised Learning models are trained using labelled data as a correct input that
guides a known desired output. The algorithm is fed with an input set alongside
associated outputs. It learns by comparing its actual model output with the correct
outputs in search of potential errors (discrepancies). The model parameters are
updated to minimise errors between the real output and the desired one.

• Unsupervised Learning is used when the data lacks known labels or some anno-
tation. The algorithm uses unlabelled data to discover patterns from the data on its
own. The goal is to explore the data and find some structure within it. Unsuper-
vised learning works well on transactional data. The systems can identify hidden
features from the input data provided. For example, it can find the main attributes
that separate similar objects into distinct categories.

• Semi-supervised Learning is used for the same applications as supervised lear-
ning, but it uses both labelled and unlabelled data for training. Typically it uses a

18

small amount of labelled data with a large amount of unlabelled data because unla-
belled data is less expensive and takes less effort to acquire. Recent work in graph
neural networks (GNNs) explores this approach to predict links between entities
modelled as a graph [39]

• Reinforcement Learning uses a reward system to train its models. The algorithm
discovers which actions yield the most significant rewards through trial and error.
It functions based on three primary components: the agent (the learner or decision
maker), the environment (everything the agent interacts with) and actions (what the
agent can do). The objective is for the agent to discover the parameter space which
maximises the expected reward in a given amount of time. As a result, the agent
will reach the goal much faster by following a reasonable strategy. The purpose of
reinforcement learning is to find the best strategy through step-wise learning.

Machine learning applications are optimal in data-intensive but are often hampered
when scarce data is available. Few-Shot Learning (FSL), a sub-area of machine learning,
is an alternative to tackle this issue. FSL is about classifying new data with only a few
training samples. It mainly works as a form of supervised information. FSL takes advan-
tage of the fact that modern computer vision models can work exceptionally well with
relatively few training samples. Using prior knowledge, FSL can rapidly generalise to
new tasks containing only a few examples with supervised information [37, 39].

An algorithmic approach to implementing ML is artificial neural networks (ANNs).
Inspired by our understanding of human brain biology, ANNs (or simply neural networks)
are represented in the information space as an arrangement of neurons and interconnec-
tions. However, unlike a biological brain, where any neuron can connect to nearby ones,
artificial neural networks are structured in layers where connections create a reasonable
direction for data propagation. As data is fed to the network’s first layer, individual neu-
rons transfer it to the second layer, and so the processes continue up to the result outputted
from the last network architecture layer. Neurons assign weight to the internal informa-
tion based on its suitability for the task. The aggregate of the weights determines the final
result.

Deep learning is the training of neural networks that contain more than a single hidden
layer [14]. Such network architectures, known as Deep Neural Networks (DNNs), have
a similar base structure to classic ANNs. The network architecture comprises an input
layer that receives application data and a sequence of internal (hidden) layers that work
as sophisticated filters to find specific features from the data. Within the hidden layers, a
cascade of non-linear processing units (the neurons) extract features from the data. Each
successive layer uses the output from the previous layer as input. The last layer then
provides the expected outcome, which is application-specific. For instance, in an image
classification task such as phytoplankton classification, the output is the expectation that

19

a given input is associated with a given phytoplankton species.

Input Layer

Hiden Layer Hiden Layer

Output Layer

Hiden Layer Hiden Layer

Figure 2: Deep Neural Network (DNN): typical structure of neurons organised into inter-
connected layers. Several hidden layers are typically used in DNN architectures.

Machine learning algorithms usually require structured data, whereas deep learning
networks can work with an enormous amount of structured and unstructured data. The
learning algorithms used alongside DNNs can be supervised or unsupervised. This techni-
que produces an abstract, compressed, distributed representation of the input data. During
the training process, the neural network updates its internal weights, minimising error to
obtain the best possible abstract representation of the input data. The representation is
abstract because it is based on learning multiple levels of features. Higher-level featu-
res are derived from lower-level features. This representation of the input data present
over the network is used to produce results for tasks such as classification, detection, and
reconstruction of objects, people or even 3D scenes in virtual reality and digital twinning.

A commonly used type of DNN relevant to this dissertation work is the architecture
of a Convolutional Neural Network (CNN). CNNs employ special filters to the data based
on convolutions that act as a data summarisation tool hence feature extractors. Also, con-
volutional layers reduce the model complexity with less interconnection between neuron
units compared to traditional ”shallow”neural networks (i.e. fully connected neurons).
CNNs primarily helped to develop automated image-specific feature extraction, which
has been used extensively for image-based ML tasks [47]. Several possible operations can
be applied to the data as it traverses the network architecture ranging from simple scalar
products to specialised non-linear filtering functions. Also, a resemblance of the human
visual system is exploited in the original CNN proposals where initial layers extract more
abstract features (e.g. vertical lines), leaving for the last row of layers to specialise for the
output.

20

1.2 Edge Computing

Edge Computing, as a concept, has strong roots in the telecom sector where the edge

of the network forwards traffic from the user access networks to the core network. Besides
forwarding data packets, the edge routers can also process the data for several applicati-
ons, including security (e.g. deep packet inspection for firewall), data minimisation, and
traffic forwarding optimisation (e.g. quality of service). Besides this strict and traditional
view of edge processing, an emerging form of edge computing considers the edge at the
end-user application perimeter. This new perspective works hand-by-hand with the cloud
computing paradigm to take advantage of advanced embedded devices that can store and
process the data gathered from the applications locally. This solution offers a unique
approach to the privacy-preserving handling of user data, allowing citizens to truly own
and fully control their data which is often relayed to commercial cloud service providers.
Although data privacy is not the core topic of this dissertation, edge computing provides a
foundation upon which a new concept of a citizen-centric, data-driven service model can
be viably designed.

The Cloud computing paradigm can still run part of its applications on resource-
constrained devices (e.g. Amazon Alexa system). The device communicates over the
internet to the cloud services via well-specified APIs, thus creating a comprehensive ap-
proach where processing power is accessible via the web everywhere [50]. Cloud compu-
ting dominated the way computing has been done in the last decade and enabled engineers
to circumvent many problems related to resource unavailability. It also retains advanta-
ges in economy of scale where centralisation can significantly reduce operational costs
[53]. Such technological and economic dynamics led to the consolidation of computing
capacity into multiple large data centres.

The departure from centralised processing in the cloud brings many benefits, parti-
cularly considering the cost reduction of often prohibitive data communication transfers.
Edge computing is by no means a competing approach to the Cloud-based systems, but it
is an improved complement to centralised data processing. By reallocating resources, it
enhances delay-sensitive applications [30]. The Internet of Things currently exploits the
cloud and edge computing spaces. Traditional IoT applications use low-resourced device
systems where the network connects the sensors close to the data of interest and the end
user to a centralised server. Such a server performs the necessary data processing for the
application. However, the boom of IoT applications led to a massive increase in small
devices and the steady increase of computational power within off-the-shelf embedded
devices. Edge computing is a natural complement to the cloud, but a few characteris-
tics still make a clear cut between those two processing paradigms [30]. The list below
elaborates on such vital aspects:

• High geographical density: Edge Computing moves the data storage and proces-

21

sing to the network’s edge. It brings services close to the end user by deploying
complex networks of mid-range embedded devices. This dense infrastructure im-
proves several applications by providing a real-time response in large-scale IoT de-
ployment [1, 31] and better accuracy in some data-intensive applications [29, 17].

• Mobility: Edge computing also supports mobility more efficiently and organically
than cloud-based systems. At the Edge, the local hardware performing the operati-
ons has a much smaller dependence on a central system.

• Proximity: As the computational resources are closer to the user-generated data, it
becomes easier to develop user-customised systems. In a complementary way, the
computer service provider can take advantage of the mobility and proximity aspect
to acquire user contextual data (user, location, environment inserted). This type of
data allows the provider to enhance their product or service.

• Heterogeneity: this refers to the surplus of different platforms, architectures, in-
frastructures, computing resources and communication technologies. Heteroge-
neous edge computing allows the customisation of the end device software and
hardware, while such details are commonly transparent. It also includes network
heterogeneity, where the diversity of communication technologies enriches edge
computing reliability.

• Low Bandwidth Cost: In Edge Computing, the data is processed locally at the
device, so there is no need to send raw data to a cloud computing data centre. As a
result, it does not impose pressure on the available network bandwidth, which leads
to an overall network-related cost reduction.

• Response Time: Other aspects of edge computing converge to the provision of
services with appropriate response time for the application. While in a traditional
Cloud-based application, the data is sent to central storage for processing, in edge
computing, the processing (e.g. data reduction) happens locally. Edge computing
can give insights into intelligent latency-sensitive applications that could, for ins-
tance, trigger the work of local actuators in real-time (or quasi-real-time).

Also, traditional cloud-based systems have to secure data transmission. Security is
a significant challenge that needs to be addressed in edge and cloud computing. Risks
and threats such as data loss and leakage must be appropriately considered [10]. Cloud
systems depend on the network’s capacity to connect the central server to the ”dumb”data
collector devices positioned with the end-user application. This raises important questions
and possible vulnerabilities. Edge computing offers an opportunity for data minimisation
and privacy compliance when the data is still on the end-user side. Nevertheless, the

22

connection between the local device hardware and the cloud server is security exploitable
in any of the computing paradigms.

Malicious agents can gain access to sensitive data travelling on the network or deny
service access by overloading the cloud server with other tasks and service requests. It
is also important to emphasise that sensitive data is an issue that goes beyond its risk of
disclosure to non-authorised third parties. In many cases, the application user provides
personal data (say, medical sensor device) so that the contracted service is delivered ef-
ficiently and, in many cases, personalised. The edge principle of system proximity to
the user cannot be neglected as a strong premise as privacy-preserving technology ena-
ble. Systems capable of local processing placed at the edge where the user sits can keep
private data where it belongs. The stored data does not need to travel through the entire
network to reach a cloud server. The data breach risk can be mitigated with this type of
local storage and processing hence avoiding unauthorised access by rogue third parties.

1.2.1 Edge Intelligence

The continuous advances in AI efficacy, the expansion and sophistication of IoT de-
vices and the Edge Computing paradigm updates create a coherent whole that unlocks a
set of new perspectives in Edge Intelligence. DNNs and related ML infrastructure have
experienced an increase in technology readiness level (TRL) in the last decade, achieving
significant practical results in several areas. In addition, interconnected sensing and ac-
tuator systems (IoT devices) have penetrated many industrial sectors. This advance has
driven the design of modern embedded systems that contribute with extended low-power
computational power and heterogeneous communication systems to enable emerging in-
telligent systems based on deep learning platforms to be realised at low-resourced systems
(e.g. mobile processors, mobile GPUs, a new generation of microcontrollers, etc.). Edge
computing aggregates such advances by acting as a system-level catalyst.

The integration of AI and edge computing is a plausible pathway to bring intelligence
to the end-user applications [73]. On the Edge Computing side, its goals are to coordinate
a set of cooperating devices to perceive the environment and process the associated data
close to the user application (e.g. IoT, robotics, enhanced reality). In contrast, AI is
experiencing a trend of delivering sophisticated ML model results to users at the edge to
benefit from low latency, proximity, and bandwidth usage. The coupling of AI and edge
computing help many applications. First, aggressive penetration of more sophisticated
embedded devices has generated a large volume of sensory multi-modal data, such as
audio, images and video. Second, AI in the form of an acceptable tuned machine learning
model is vital to high-quality data analysis for rapid decision-making.

Despite the advantages of AI-based Edge Edge Computing, there are challenges to be
overcome. Machine learning models, especially Deep Learning ones, are complex com-
putational artefacts. Such models can have several millions of parameters and use large

23

amounts of computational cycles to generate valuable results. Also, ML tend to be highly
memory hungry and needs access to powerful processing units such as highly parallel
vector machines (e.g. GPUs) to train models accurately and deliver model inferences.

It is critical and urgent to map such system bottlenecks, overheads, costs and ”AI
taxes”generated when taking these models to an edge device. Mitigating such edge device
limitations to the ML model becomes a priority to support the ever-growing emerging ML
applications that benefit the end user. Zhou et al. [73] presents an initial list of metrics
that could be explored to evaluate the inference service of ML models at the edge:

• Latency: It refers to the time spent in the model inference process, including pre-
possessing, model inference itself, and data transmission. The present work focuses
on the inference phase of ML models deployed at the edge and the likely perfor-
mance and resource usage impacts.

• Accuracy: The average ratio of the number of input samples that receive the
correct predictions from inference to the total number of input samples. This is
a typical variant of ML model performance that should be fully considered when
taking models to the edge. Also, some safety-critical applications at the edge (e.g.
assistive medical robots, driverless cars) may require a higher level of reliability
that can be fulfilled with additional model quality metrics.

• Memory Usage: The memory footprint of DNN models is a concern in the context
of Edge Computing. Typically, a high-precision DNN model is accompanied by
millions of parameters which can easily consume significant memory space. Un-
like resourceful Cloud machines, memory availability is a bottleneck in embedded
systems. The memory footprint is a non-negligible indicator that should be consi-
dered in DNN model optimisations.

• Energy: Running a DNN model is expensive and often time-consuming. While
cloud-based systems have a dedicated power supply, edge devices tend to be
battery-limited. In addition, the computational processing needs for DNN infe-
rences account for additional energy consumption. It is crucial to ensure the energy
efficiency of AI edge-based models to leverage the inherent advantages of integra-
ting edge processing devices into cloud servers.

1.2.2 Federated Learning

It is important to highlight an emerging Edge Computing technique that covers the
distributed training of DNN models. Federated Learning (FL) framework in Edge Com-
puting provides a practical mechanism to implement parameter learning training across
a set of networked devices. It enables Edge devices to collaboratively learn a shared
prediction model while keeping all the training data on the device. FL works through a

24

decentralised strategy where client devices download a global DNN model from a server
and train it with private data stored by the device, turning it into a local model. After
that, all devices send the local model weights to the server to formulate a new global
model. The federated devices perform these cyclic steps, further training the model [51].
Although FL is a promising approach for edge computing, the present work focuses solely
on the inference phase of models deployed at the edge, and most importantly, it attempts
to understand the performance and resource-related limitations.

1.3 The Case Study: Edge Computing for Water Quality Manage-
ment

The H2020 ASTRAL1 is a European Commission project focused on integrated multi-
trophic aquaculture (IMTA) farming that will define, support and promote sustainable
aquaculture production across the Atlantic. The project addresses sustainability along a
strong Climate-Ocean-Food value chain. It links expected environmental risks to cost-
efficiency and best practices of aquaculture production and food safety. This target is
supported by technological innovations providing a significantly improved capability of
observing and monitoring three main environmental water risks: harmful algae blooms,
water pathogens and microplastic pollutants. This will lead to concrete recommendations
on monitoring programmes and technological development and promote sustainability.

The ASTRAL project prioritises aquaculture due to its high potential for sustainable
jobs and growth, specifically by focusing on new value chains for aquaculture production.
As a result, the sector has constantly increased its percentage in the total fish production,
reaching 53% of the total seafood production from fisheries and aquaculture in 2015 [60].
Furthermore, considering the potential of the human population to reach 10 billion by
2050 [15].

A relevant issue for aquaculture and water quality monitoring is the detection of HABs
that can grow extremely fast, expanding into the whole area of the fishing farms. Detec-
ting HABs at an early stage is essential to react and intervene accordingly. However, the
state-of-the-art methods rely on late decisions based on the cloud-based processing of sa-
tellite images. Edge computing enables solutions closer to the water environment (in-situ
monitoring). It brings the detection platform with self-contained models for local device
processing and detection results in seconds (i.e. time of an inference).

The most traditional method for studying phytoplankton distribution and abundance
is the microscopic examination of water samples or cell harvesting by filtration, which
sacrifices information about the distribution of properties among the cells. Traditional
microscopy allows high-resolution images and thus provides detailed inspection of indi-
vidual phytoplankton at the expense of imaging throughput. The identification of species

1https://www.astral-project.eu/

25

is based on the morphological characteristics of the collected phytoplankton. However,
manual microscopy testing techniques require specialists with rich knowledge. While
useful for visual inspection, conventional microscopy lacks high throughput and analytic-
level accuracy.

It is essential to bring emerging technologies to classify phytoplankton and predict
HABs. Automated ML-based classification can bring many advantages to the early detec-
tion of HABs. Examples include automatically classifying individual organisms, counting
individuals in each group, and critically analysing population variations. Over the years,
DNN models have achieved impressive breakthroughs in many areas. Expanding its use
for HAB detection through sorting and counting could lead to more complete warning
systems in regions of interest. Once the model is trained, most of the specialised work is
done, thus enabling fast and reliable sorting without the immediate need for an expert.

Edge computing can, in turn, significantly contribute to monitoring HAB-related
events. Bringing ML models to the end user, in this case, aquaculture farmers is not
easy. However, the computational paradigm of Edge Computing has the potential to
enable such technologies to roll out in relevant environments. Traditional HAB detec-
tion methodologies rely on satellite images to identify visual cues, such as the red tide
[72, 34]. However, farmers benefit from a portable benchtop device deployed directly on
the field with sufficient intelligence to detect harmful algae blooms from phytoplankton
species classification. This requires significant edge design advances to accommodate
ML models on resource-restrained systems.

1.4 Data Science to Edge Deployment

A typical data science development workflow is described in Fig 3. The accuracy
and performance are usually evaluated for the Data Science Phase, where the model is
validated using different metrics and sets of testing data. However, the data scientist fa-
ces challenge to deploy the models created in highly resourced cloud servers into edge
devices for some applications (e.g. driverless vehicles, image object detectors, personal
voice assistants, and so forth). The case study explored in this dissertation - namely the
microscope-level image classification of phytoplankton - also follows the steps presented
in the diagram (Fig. 3). The In-Situ phase includes the base hardware and software of the
phytoplankton sensor that acquire the images and deliver them to the deployed model. In
the first step in this phase, textbfvideo capturing accounts for the main system component,
followed by the essential software for Frame Extraction and Specimen Segmentation
where the collected data is pre-processed before it is inputted into the models. Next, in the
Data Science phase, data is handled to build and validate models for the application ite-
ratively. The Data integration step is a process where datasets from different sources are
prepared for model development and validation. During the Model Training, the different

26

model architectures (new or based on readily available architectures) are trained using the
target dataset created in the previous step. Finally, in Cloud Inference, the models can
be used in cloud-based applications. In cases of edge computing deployments, modes are
tested in search of the best results in quality-related (typical) but also performance-watt
metrics specifically for model selection in edge computing deployments.

In this sense, this work addresses the needs of a large number of researchers and
developers who have either limited guidelines or sometimes follow ad-hoc principles on
how to approach the Edge Phase of the workflow.

Figure 3: Data Science to Edge Deployment Workflow.

The Edge phase is crucial in the edge application development cycle. This phase con-
sists of two steps. The Model Optimisation comprises specialised libraries (e.g. NVIDIA
TensorRT) with cloud-trained models to generate optimised versions of the model.

The final phase, Analytics, consists of handling the results generated when deploying
the models to edge devices. Power and Performance related data is continuously analy-
sed as models are tested in the target embedded platform.

1.5 Research Questions and Objectives

Edge Computing can deliver high-speed ML models at the edge, closer to the appli-
cation. For instance, the proposed case study benefits from a device that can detect HAB
events quickly to minimise adverse economic and social effects. Provided the techno-

27

logy is low-cost, its penetration into aquaculture facilities may guarantee efficient and
controlled fishing production as a green technology to help our planet’s sustainability.

However, Edge Computing comes with a complex non-trivial price tag regarding ML
models’ computational capacity. As already mentioned, cloud-based ML models are cum-
bersome, power-hungry and have a high memory footprint. In contrast, Edge Computing
relies on low to mid-range embedded devices, which have limited capabilities in terms of
power, computational power and available resources. As a result, deploying such models
into these devices is a real challenge.

The present work explores how feasible it is to bring complex DNN models to edge
devices. The work addresses the following Research Questions (RQ):

• (RQ1) What is the performance and accuracy impact of taking cloud-based models
to resource-constrained devices at the network edge?

• (RQ2) What is the power footprint in running machine learning classifiers in
microscopic-level image benchtop analyser devices? And what is the impact of
edge device software libraries on the deployed models in terms of performance-
watt?

1.5.1 Aim

This work aims to understand further the system limitations associated with the tran-

sition challenge of taking models trained in the resource-rich cloud environment (Data
Science Phase) into resource-limited edge devices (Edge Phase). Fig. 3 illustrates the
transition challenge.

The limitations in terms of performance and accuracy of embedded machine learning
models will be validated with datasets and context for an environmentally sustainable
application-driven scenario: water quality management in aquaculture.

1.5.2 Specific Objectives

This overall objective will be reached through the following specific objectives:

• S01 - To investigate the accuracy of cloud-based models once deployed into
edge devices [RQ1].
An ML classification model’s accuracy (ACC) is among the most important metrics
to measure model quality and performance. Thus, exploring how much of the model
ACC can be affected as it is deployed to a resource-constrained device is crucial as
part of a new set of guidelines. For instance, the accuracy discrepancy between
cloud trained model and its optimised version for an embedded system (e.g. Jetson
NANO) will be further explored.

28

• S02 - To investigate possible performance gain (in image FPS) in model post-
optimisation [RQ1].
As we deploy the models to the edge, an important aspect to analyse is the achie-
vable image throughput in the device for each model and its variations. The model
optimisation software (e.g. TensorRT) promises significant gains. However, perfor-
mance in terms of FPS (frames per second) depends on the deployment, so explo-
ring alternatives to enhance system performance is crucial. This work looks at the
impact of the TensorRT optimisation software in the embedded system.

• S03 - To conduct a deep analysis of system power consumption [RQ2]
The most critical gap in the literature this work seeks to fill in the preparation of
a comprehensive power consumption study of selected embedded models. The ex-
perimental regime will be constructed in such a manner as to highlight the power
consumption across the whole machine-learning data pipeline. A detailed analy-
sis of each experiment step will be carried out for each selected model, enabling a
thorough power consumption profiling.

• S04 - To analyse the resources used [RQ2].
This work will explore how each model affects computational resources: memory
consumption and CPU & GPU usage in an embedded device. To determine the
model feasibility for edge device deployment, we should also investigate how much
resources are used on average to fulfil an end-to-end model inference path.

• S05 - To understand the performance-watt [RQ2].
Modern embedded system evaluation employs a two-dimensional analysis that inte-
grates performance with power consumption. The performance-watt metric will be
studied by considering simultaneously the image throughput and power consump-
tion for the resources used.

A research programme was established to attain the objectives above with weekly me-
etings between the candidate and their supervisors. This dissertation text reports on this
journey: Chapter 2 overviews concepts and critically discusses the related work. Chap-
ter 3 proposes the methodology, including systems, experimental design and validation
approaches. Chapter 4 reports on the experimental analysis results. Chapter 5 draws the
main conclusions and explores areas for future work.

2 BACKGROUND AND RELATED WORK

This chapter serves two purposes. Firstly, it motivates the work by introducing key
concepts in the application domain used as the guiding line for the technical work. It
presents currently available devices in worldwide labs (commercial and open-source) that
can be used for microscopic imaged-based assessment of water quality parameters. The
work of this dissertation goes beyond this system’s functionality in a mixed human-AI
system for human empowerment. The user application analyst will have access to emer-
ging Edge Devices embedded with intelligence for a trustworthy hybrid decision-support
system. The second part of the chapter covers the concepts and key system aspects of
a representative of such edge computing device that retains some processing power at a
low-cost price tag. Finally, the chapter discusses the issues and gaps identified from the
literature. The performance-watt profiling of such edge computing devices emerges as a
first step yet crucial in understanding system limitations for novel intelligent edge com-
puting applications. This explores some system limitations in taking machine learning
models trained in a cloud-based environment with plenty of computational resources into
a resource-constrained edge device for inference purposes.

2.1 Use Case Context, Traditional Standalone Devices

Several traditional data analysis applications can move part or the entire data pro-
cessing to devices operating on the end-user premises at the very edge of the network.
Because the application space to survey is enormous, we take a single application hoping
it can represent a future edge computing application reasonably well. This is also motiva-
ted by the context of this work which develops under the European Commission-funded
project ASTRAL 1. In this initiative, FURG is the work package leader for developing a
pool of intelligent advanced sensor technologies. The ASTRAL project is timely because
it offers the playing field for the design of low-cost, edge-computing IoT and AI-based
vision sensors for water quality management in aquaculture. This real-world context pro-
vides the necessary application requirements, common across almost all edge computing

1https://www.astral-project.eu/

30

use cases, particularly the quality of the machine learning models and the duo factor
performance-watt for AI embedded in resource-constrained devices.

Water quality management in many areas is considered challenging, especially in ca-
ses with limited intervention time. The aquaculture farming explored in the ASTRAL
project is undoubtedly one of them. Global food systems will be pressured to produce ani-
mal protein in large quantities [65]. Aquaculture’s rapid and steady growth is necessary
and should be boosted and refined whenever feasible. ASTRAL aims to promote aquacul-
ture development by implementing innovative and resilient value chains. It assesses their
circularity and sustainability to improve production control and monitor environmental
hazards with innovative low-cost sensing and actuation technology.

A relevant issue for aquaculture and water quality monitoring is the detection of harm-
ful species of phytoplankton that form what is called algae blooms by collective grouping
together. Such grouped toxic phytoplankton (or just harmful algae blooms - HABs) can
proliferate in the water environment in a way that threatens other living species.

Detecting HABs at an early stage is essential to react and intervene accordingly.
However, the state-of-the-art methods rely on very late decisions based on the cloud-based
processing methods for satellite images. In contrast, Edge computing enables solutions
closer to the water environment (in-situ monitoring). It brings the detection platform with
self-contained analysis models to the user’s point of interest. The local device processing
and detection results in seconds (i.e. time of an inference) are key features in applicati-
ons such as in-land remote aquaculture, often with minimal power supply and network
connectivity.

The diversity of algae blooms and their impacts present a significant challenge for
those responsible for managing coastal resources such as wild fish and marine aqua-
culture. The extreme diversity in genus and species makes phytoplankton populations
vary highly in size, shape and morphology [32]. As a result, the strategies needed to
protect wild fauna, minimise economic and ecosystem losses, and protect public health
vary between geographical locations and associated HAB types. However, a critical step
in many monitoring processes encompasses the detection of the HAB species directly.
Counting individual species can guide either management decisions or additional mo-
nitoring activities [2]. The ability to classify phytoplankton individuals extracted from
suitable locations becomes vital in the early detection of HAB events.

The key to developing early warning and detection capabilities for toxic algae blooms
is a well-designed field-sampling program [22]. The focus should be on the detection
of dangerous species. Classifying individuals seeking the excess of known dangerous
species is crucial in this case. The traditional analysis method is labour-intensive through
extensive manually operated microscopic examination (e.g. Flow cytometry - FC; and
Image Flow cytometry - IFC). Conventional microscopy allows high-resolution images;
hence detailed inspection of individual phytoplankton can be delivered at the expense

31

of imaging throughput (i.e. the number of images analysed per time unit). FC enables
quantitative analyses of particles’ optical properties in a fluid, resulting in particle size
and composition information [44]. In contrast, IFC integrates the traditional FC technique
with advanced image acquisition, producing an image output enriched by tailored particle-
specific information.

2.1.1 FlowCam: manual and visual analysis

Figure 4: FlowCAM Block Diagram [40]. Computational components - hardware and
software) are in red blocks. Other components in represented in blue.

The FlowCAM is a bench-top integrated commercial system for particle analysis in
a moving fluid. Despite its high cost, the instrument is flexible and widespread, highly
used to analyse phytoplankton populations [7, 36, 35, 59]. It provides the capabilities of
fluorescence detection, light scattering detection and image processing used to enume-
rate particles in a fluid for human-based classification assessment. The user is usually
a well-trained biologist with years of experience analysing this image. The instrument
can be operated in fluorescence-triggered or auto-trigger modes. In addition, the analysis
software features valuable tools for manually characterising each particle image under
many measurements, including length, width, aspect ratio, equivalent spherical diame-
ter, etc. More recently, the device manufacturer introduced AI-based software that can
help trained biologists with the daunting task of visual-based phytoplankton classifica-
tion. However, as it is a very early stage of development, the manufacturer does not
provide sufficient information on the method or technique used to build this classification
capability. In addition, the robustness of this method is yet to be released.

32

FlowCam can be considered a ”golden standard”for manual and visual classification
of phytoplankton populations. However, the instrument is costly and remains so mainly
because the offset of R&D investments cannot be neglected. The economy of scale has
not reduced the price tag of FlowCam equipment which figures as strictly for work use
requiring a reliable power supply. FlowCam tabletop design choice prevents deploying
applications that favour data analysis as close to the target water environment.

2.1.2 FlowCytobot: in-situ applications

Figure 5: The FlowCytoBot system and this external protection tube.

Imaging FlowCytobot Olson and Sosik [45] is an IFC device specialising in marine
in-situ applications. The system can be deployed in many scenarios intended for marine
experiments that have grown in number in recent years [9, 25, 8, 24, 5]. The device uses
a combination of video and flow cytometric2 technology to capture phytoplankton orga-
nisms images with particular attention to target chlorophyll in each image. The FlowCy-
tobot is submersible, operated at a maximum depth of 40 meters with a system autonomy
of 6 months, transmitting real-time data to a remote facility. The device works as a stan-
dard flow cytometer and relies on hydrodynamics that focuses on a sample fluid stream
that passes across a laser interrogation point. The laser excitation for the flow sample le-
ads to light scattering and fluorescence emission from chlorophyll in cells. The scattered
light triggers a xenon flash lamp to illuminate the flow, and a monochrome CCD camera

2Flow Cytometry is the analysis and feature extraction of particles in a passing fluid. Cytometry uses,
in most cases, a laser excitation procedure and extracts feature such as morphology and size via light
scattering.

33

captures the image. Similarly to other IFC instruments, the FlowCytobot generates a rich
information set that annotates the captured images. Although this device enables in-situ
data analysis at a high cost, the system falls behind in providing a more automated and
rapid analysis solution for the end users. The advanced intelligence enabled by machine
learning at edge devices is an area the manufacturer recognises as promising but still has
not yet delivered an integrated solution. The current solution for the image analysis is
to connect the FlowCytobot to a workstation computer for manual data download. The
generated raw images and annotated information should be analysed by a well-trained
biologist, either by error-trial visual inspection or third-party software.

2.1.3 FlowSight: from biomedical to marine applications

Recently, the number of IFC instruments has increased to include the Imagestream X
Mark II (Amnis-Merck Inc, Seattle, USA), also known as FlowSight. Unlike the other
imaging flow cytometers for aquatic studies, the Imagestream instrument family has been
primarily developed for cellular analysis in the biomedical industry. The common usage
includes tailored analysis such as cell signalling, cell cycle and mitosis, cell-to-cell in-
teractions, internalisation and co-localisation, cell death and many others. Nevertheless,
this device has entered the marine community to support phytoplankton-related research
[66, 13]. More relevant work is expected as this device spreads through the marine scien-
tific community. Any attempt to classify phytoplankton using FlowSight has to be made
through visual analysis by trained biologists.

2.1.4 PlanktonScope: A call for low-cost, community-based device

Pollina et al. [48] presents a flow-based imaging platform in two distinct configura-
tions built around open-hardware principles, leveraging off-the-shelf hardware compo-
nents. An open-source software strategy relies on existing interfaces, image processing
libraries and a flow-based visual platform, thus enabling users to customise acquisition
and data processing steps. The system leverages the open-source hardware Raspberry Pi
computer3 enabling a mechanism to (a) control the electronics, (b) acquire and process
the image, (c) and serve as the user/machine interface. The work presents a workflow
of image processing executed as a fixed number of images collected and turned into a
batch. First, the system calculates the average background from five frames surrounding
the current one. Next, this background is used for subtraction. Then a threshold is applied
to the image, highlighting the object and allowing it to be extracted. Finally, the method
pulls features from the binary extracted objects, including eccentricity, equivalent diame-
ter, Euler number, area, orientation, perimeter and many others. The image processing

3Raspberry Pi is a series of small single-board computers developed by a group of Cambridge University
academics to promote teaching activities worldwide. Raspberry Pi has gained significant ground in the
embedded systems space, and it is now integrated into many systems and products worldwide.

34

(version v.1) is done with a desktop computer for faster data computing. However, ver-
sion V.2 does initial processing in the Raspberry Pi. Afterwards, the segmented images
can be offloaded to another device for further processing.

Figure 6: PlanktonScope Software Flow[48].

This can be considered a step towards automated phytoplankton classification and
early detection and warning of HABs. The proposal of a low-cost embedded system
capable of acquiring and storing data for classification allows the user to take this techno-
logy to the water environment location. The system modularity is a positive aspect o the
system as it will enable integration using commercially available low-cost hardware com-
ponents. However, the system still lacks intelligence. The embedded software does not
give functionality for any machine learning classification model. Data must be uploaded
to an external online tool so that server-based classification software can process the data
for user analysis.

The premise of this dissertation work is that running this image analysis step on a
locally available system means getting the results as the data collection happens. This
system capability brings agility to water quality management, especially for those ap-
plications where clock ticks are of utmost importance. For example, aquaculture farming
and early detection of toxic algae fall precisely into this application constraint and require-
ment. Table 2.1.4 provides key facts about the surveyed devices. This is not an exhaustive
list, and it should serve only as a discussion guide for the current system limitations in
water quality monitoring and, more generally, on any application that can potentially have
embedded intelligence using machine learning models.

FlowCAM and FlowSight are market-available bench-top products with limited phy-
toplankton classification capabilities. Such device manufacturers have not disclosed de-
tails of their tools’ classification methods. In addition, both devices require a reliable
power supply to work.

35

Table 1: Review summary of devices.
Off-Grid Power Embedded Classification Low Cost

FlowCAM NO Varies NO
FlowCytoBot YES YES NO

FlowSight NO NO NO
PlanktoScope YES NO YES

FlowCytobot and PlanktoScope are both embedded devices intended for field-based
missions. In both cases, the instruments take the samples and process them for classifi-
cation upstream (off the device). FlowCytobot uses an external algorithm that classifies
phytoplankton images. Similarly, the PlanktoScope connects to the EcoTaxa cloud-based
service and uploads images for classification.

Regarding cost, PlanktonScope is the only one designed for the low-cost end of the
spectrum. The other are products used in a wide range of high-end research laboratories
worldwide. The cost might be suitable for a highly funded research project, but it is
prohibitive for end-users such as farmers in aquaculture.

2.2 AI Edge Devices: Beyond Traditional Devices

Embedded systems have intensified as high-performance and low-power consump-
tion systems. This mid-range device represents much of the increase in the IoT, robotics
and extended reality emerging applications in recent years. The Jetson NANO4 is an
entry-level Edge device, a powerful single-board computer in a small, portable form fac-
tor providing parallel cores for AI applications. The onboard GPU enables the platform
to perform tasks of higher complexity than classic embedded IoT devices5 As mid-range
devices mature as technologies, their computational power can push innovative models
and techniques to a new frontier. A fully equipped edge device for AI applications sup-
ports complex algorithms to overcome application constraints in areas dominated by non-
intelligent devices. Also, it enables applications that already have AI support but depend
on cloud connectivity to run independently and more reliably. But, it is important to
highlight the challenges of taking machine learning algorithms to the edge. ML models
typically run in the cloud, in resource-rich platforms, and communicate with less intelli-
gent devices via a communication network. Bringing those resource-hungry models to the
edge requires (a) a thorough understanding of the edge device limitations and (b) reaso-
nable steps to fine-tune models to run optimised versions on resource-constrained devices
– power, memory, CPU and communication constraints. To what extent such constraints
impose limits to the cloud-based models remains a question worth investigating further.

4https://developer.nvidia.com/embedded/jetson-nano-developer-kit
5GPU-enabled ARM-based systems are now available from Intel, AMD, ARM and others. This work

focuses on one of them with reassurance that the resource limitation model is transferable across these
devices.

36

The literature offers various techniques to optimise, miniaturise and compress ML
models [28]. Each method addresses the problem of large and power-hungry models
from different viewpoints where interesting results are reported. Using the Jetson NANO
opens a viable path towards embedded ML models in edge devices. This NANO system
offers an ML model optimisation tool. The TensorRT library is primarily developed for
desktop hardware and generates an inference engine customised to the architecture where
the target optimisation is intended.

2.2.1 Jetson NANO Plataform

This platform is a low-cost development tool for image classification, object detec-
tion, segmentation, speech processing, autonomous driving, industrial robotics and other
applications. The Jetson NANO (Figure 7) module has a comprehensive development en-
vironment called JetPack, a complete Linux environment with ready-to-go libraries. On
the hardware side, the Jetson NANO is equipped with a heterogeneous architecture inte-
grating an ARM-based CPU core with a customised NVIDIA GPU. This integration has
some memory optimisation benefits (shared space) that allow the CPU to support embed-
ded applications with the option of acceleration through CUDA-capable GPU cores to
speed up complex ML tasks.

Figure 7: NVIDIA Jetson NANO architecture, highlighting each component in the carrier
board. [62]

The Jetson NANO platform is fully equipped to handle machine learning applications.
The system is built on a Quad-core ARM Cortex-A57 MPCore Processor and a 128-core
NVIDIA Maxwell GPU. It also comes with 4GB (or 2GB) memory that facilitates project
tasks and helps applications achieve operational performance and capabilities. Also, the

37

system has an in-built 16GB storage device and a removable microSD card for further
storage and booting functions. The system specification is summarised in Table 2.

Table 2: NVIDIA JETSON Nano Specifications
CPU ARM Cortex-A57 (quadcore) @1.73GHz
GPU 256-core Maxwell @998MHz

Memory 4GB 64-bit LPDDR4 @1600MHz — 25.6 GB/s
Storage 16GB eMMC 5.1 -
Power 10W -
Jetpack 4.6 [L4T 32.6.1]
CUDA 10.2.300 -
cuDNN 8.2.1.32 -

TensorRT 8.0.1.6 -

2.2.2 Model Optimisation

Model optimisation is a natural process of achieving an objective at the expense of
some other aspects. Model Optimisation techniques attempt to maintain the quality of the
AI services (and associated models) at the edge despite the lack of sufficient computing
resources, storage, and communication bandwidth. ML models are notoriously memory
hungry and require large amounts of power. Therefore, it is necessary to use techniques
that facilitate its use on edge. Optimisation techniques in this area can be broadly catego-
rised into model compression and conditional computing. For this work, we will explore
a few model compression methods and outcomes that use them. Such optimisations ex-
plore complexity reduction in deep neural network architectures as valuable heuristics for
deploying resource-hungry ML models into resource-constrained edge devices.

We review pruning, quantisation, and low-rank factorisation as model compression te-
chniques. Also, the TensorRT optimisation tool is presented as an alternative for practical
deployment in the NVIDIA underlying hardware.

2.2.2.1 Model Compression: Pruning

Pruning of parameters is the most widely adopted approach to model compression.
This technique evaluates the neural network parameters and their contributions to the
results. Each neuron contributing to the inference is then pruned from the trained DNN.
Pruning can reduce the DNN size at the expense of negative performance impact.

Han et al. [23] is an effort towards model optimisation using pruning as the primary
tool. This work reduced the VGG-16 model size by 13 times without incurring accuracy
losses. The paper explores how such a reduction allows for on-chip model storage. This
reduction can avoid loading the model from off-chip RAM, which is a costly operation in
terms of energy. However, the study does not offer experimental data on power consump-
tion differences, where the work primarily focused on desktop systems. There is room

38

to explore issues associated with a limited resource environment, mainly in applying new
edge device optimisations.

Li et al. [38] is a one-shot6 structured pruning framework. Traditional pruning
methods operate on the entire deep neural network architecture, subjecting the complete
model parameters to pruning. In contrast, independent pruning tasks are performed on
filters and channels in structured pruning. This work reports that the model does not
suffer any penalty in terms of performance after passing through the framework, thus
achieving a similar level of accuracy as the base model. Although the authors comment
on the framework’s usefulness for low-power systems, the work does not offer details on
experimental results.

2.2.2.2 Model Compression: Quantisation

The quantisation is a compression optimisation method that decreases computatio-
nal complexity with minimal accuracy losses. In particular, it is a technique in which a
model’s arithmetic representation of the tensors (parameters) is reduced. For instance,
quantisation can be applied to various target machine data representations, such as floa-
ting point 16-bits, integer 16-bits, integer 32-bits, and so forth. A tensor quantised to a
lower form of machine number representation executes all or some of its operations in
lower precision. As a result, the data within the model is represented more compactly,
leading to insufficient memory and energy requirements. Unlike pruning, quantisation
promises power consumption improvements directly.

Yang et al. [69] integrates parameter quantisation with dynamic programming by pro-
posing an algorithm with two DNN quantisation approaches. The author reports a 16x
compression factor for a ResNet-18 model. However, such a result has a 3% accuracy
drop associated but remains encouraging for developing intelligent systems at the edge.
Although the consensus is that quantisation improves the model’s energy efficiency foot-
print, the work does not elaborate on results in this direction.

Huang et al. [27] proposes a mixed precision quantisation scheme used in DNN in-
ferences. The scheme targets weights along model inputs and partial sums inside the
hardware accelerator. It also explores an automated quantisation flow powered by deep
reinforcement learning to search for the best quantisation setup. The author reports a re-
duction in model latency of 3.89x and a decrease in power consumption of 4.84x while
model accuracy drops by 1.18%.

2.2.2.3 Low Rank Factorization

Low-rank factorisation helps condense the set of DNN parameter weights hence li-
miting the number of required computations in convolutional layers. The technique is

6One-shot learning is a method whereby an ML model is trained to measure the distance between 2
input images. The distance is the learnt function as part of the model training.

39

centred on calculating another low-rank matrix that approximates the DNN parameter
set, convolutional kernels, or both. The low-rank factorisation optimises memory usage
on Edge devices but also seeks to reduce latency simultaneously. Unlike pruning, after
applying low-rank factorisation, there is no need to retrain the model.

Chen et al. [11] used the low-rank factorisation by applying a singular value decom-
position (SVD) transformation. As a result, the work reports a substantial reduction in
the number of parameters in the model’s convolutional kernels. Such a reduction led to
floating-point operations (FLOPs) falling by 65.62% in VGG-16 trained models. Also,
the work reports that an increase in accuracy of 0.25% has also been observed.

2.2.2.4 A Practical Tool: TensorRT Optimisation Engine

NVIDIA’s TensorRT 7 is a high-performance library that interfaces deep learning ap-
plications with production environments. It enables easy deployment of deep learning
models in edge environments with improved performance and efficiency. Many applica-
tions have used this edge computing platform in recent years [64, 61, 54, 19]. In addition,
Shafi et al. [56] has extensively tested this platform as an optimisation engine for edge
applications. TensorRT acceleration library boosts general AI models for integration into
NVIDIA hardware.

Figure 8: TensorRT optimisation steps [56]

The library runs directly on the available GPU’s Compute Unified Device Architec-
ture (CUDA) cores. These are the fundamental blocks with which NVIDIA creates its
GPU—enabling native use of the CUDA system and benefiting from GPU computation
acceleration. The CUDA cores are an array of parallel processing units within the GPU
system that can be interfaced and controlled with C, C++ and Fortran without requiring

7https://developer.nvidia.com/tensorrt

40

assembly knowledge. The use of TensorRT for deep learning optimisation goes through
two phases: build and deployment. First, the library optimises the model’s network con-
figuration and generates an optimised plan for computing the forward pass through the
neural network. The deployment stage takes the form of a long-running service or user
application that accepts batches of input data and executes the inference by following the
optimised plan.

In the deployment phase, TensorRT does not require the user to run a deep learning
framework on the target hardware. Instead, TensorRT identifies opportunities to optimise
the network and runs the optimised network, minimising latency and promoting high
throughput. The library optimises trained neural networks for run-time performance, de-
livering faster and less power-hungry models. It executes several crucial transformations
and optimisations directly on the AI model’s graph (Figure 8):

• It drops any layer with unused outputs, thus avoiding wasting computational resour-
ces and time.

• It searches for any remaining layers that can be fused. In this step, convolution, bias
and ReLU layers across the network graph are fused vertically to improve running
time.

• It also performs horizontal layer fusions to enhance performance by combining
network layers that take the source tensor and apply the same operations with si-
milar parameters. The resulting single extensive layer contributes to computational
efficiency and avoids rework.

• Finally, the model is quantised with the precision of choice (e.g. 32-bit floating
point).

2.3 Related Work

This section discusses other literature work highlighting their contribution and unre-
solved issues.

Bianco et al. [3] offers an in-depth analysis of several deep neural networks available
in the literature. To achieve this, the authors explore a series of indicators, such as ac-
curacy, model complexity, computational complexity, memory usage, and inference time.
The behaviour of such metrics and some combinations of them are analysed and discus-
sed. The results in this paper suggest that the MobileNetV2 [52] is a reasonable DNN
candidate to be deployed at the edge. The paper discusses accuracy results, mainly the
Top5 accuracy ranking. This metric measures how efficiently each model uses its para-
meters, showing the overall efficiency of the results in terms of used resources. However,
such work carried out experiments on a general-purpose dataset that does not fully trans-

41

late into our case study (i.e. early detection of HABs from microscopic images). Addi-
tionally, Bianco et al. [3] does not use an optimisation engine to perform experiments on
the edge device, leaving this an open gap to be explored. Nevertheless, the set of metrics
proposed is useful, and this dissertation expands on it for the evaluation experimental
work.

Yi et al. [70] explores the concept of cold inference in DNN-based inference and the
effects of this phenomenon on ML applications. The work highlights recent trends in
developing and deploying embedded applications based on deep neural networks. Such
model complexity has steadily increased recently, which is not always good news for en-
gineers attempting to place models into edge devices. The cold inference is a phenomenon
observed in ML model usage. It is characterised by the inference process taking signifi-
cantly longer to execute in the first rounds of inference. Cold inference occurs primarily
due the device running the model needs, in most cases, to take critical algorithmic steps
before the inference. For instance, the device may need to load necessary packages to
perform the inference or cache data. After that, the ”warm inferences”do not suffer such
setbacks.

Consequently, it is challenging to deploy complex models or multiple simple ones into
device memory and expect that when a DNN inference is needed, the system is readily
available (warmed up). The cold inference needs to load, initialise and ”execute”a DNN
model in a resource-constrained device for a set of data input (batch of inferences). The
speed of cold inference matters critically to the user experience and application quality
of experience. The work in this paper establishes a series of heuristics to measure and
understand the phenomenon of cold inference in embedded devices. The authors test a
series of models from the literature and report the performance gap between cold and
warm inferences. The authors note, for example, that the cold inference can be up to 3x
slower than its warm counterpart. The findings of this work are fundamental for a healthy
and well-informed development of DNN-based systems at the edge. Understanding such
effects in deployed models and the overall embedded system is crucial.

Figure 9: Steps taken in a typical flow: ML image classification task [6].

Buch et al. [6] explores individual execution stages of ML applications. It quantifies
performance penalties in each process step. First, the paper characterises a high-level
pipeline for a typical end-to-end image classification ML task. Such a pipeline compri-
ses Data Capture, Pre-processing, Frameworks, Execution and Post-Processing, Figure

42

9. Next, the authors classify the sources of overheads in the ML pipeline as algorithms,
frameworks, or hardware. The combined end-to-end latency of the ML execution pipeline
is referred to as AI Tax. Finally, the authors explore possible overheads surrounding the
inference process and classify it as follows:

• Algorithms: Runtime overheads associated with data capturing, pre-processing,
preparing data for the model, and running post-processing code that often gives the
structured result from the model output.

• framework: Overheads related to low-level software in the form of drivers coordi-
nating scheduling and optimisations.

• Hardware: CPU, GPU, or accelerator offloading costs, run-to-run variability, and
lagging due to concurrent models’ execution.

The authors argue that inference-only performance analysis rarely captures the non-
model execution overheads. The high-level application pipeline of ML varies very little
in many mobile applications, so understanding bottleneck patterns can help mitigate inef-
ficiencies. The goal is to summarise the overheads surrounding the ML model execution
and highlight the potential bottleneck steps other than the model execution itself. This
time the system has to spend on efforts other than model execution to enable it is the AI
Tax properly. The taxonomy proposed by the work is an advance to understand better
how such overheads affect the performance of ML applications. This paper sheds some
light on trade-offs associated with classification performance (e.g. accuracy, speed) on
the edge and resource usage. In addition, it investigates the ability to use low-cost off-
the-shelf embedded platforms for technology deployment. However, the work does not
sufficiently provide a benchmarking with the TensorRT optimisation engine, widely used
in embedded system hardware. And such a tool would be a good fit for the framework the
authors propose as the TensorRT serves as a model optimisation interface, running under
the inference step.

Shafi et al. [56] is an effort to characterise the impact of using the TensorRT optimisa-
tion engine on the inference process of deep learning models deployed on edge. The work
describes recent research progress and development of hardware platforms and software
stacks focused on the efficiency of embedded NN inference. A hierarchy of hardware and
software levels of machine learning-powered inference is presented in Figure 10.

This work explores the impact of TensorRT (Level 6) on the results and performance
of DNNs deployed in NVIDIA hardware. The authors experiment with relevant DNN
models and examine the interaction between software optimisations and GPU hardware.
They also perform empirical analyses based on TensorRT in real embedded GPU plat-
forms using a variety of widely used DNNs. The authors report some promising fin-
dings, such as that the TensorRT sustains the DNN’s accuracy, even compared to the

43

Figure 10: Hardware/Software stack hierarchy for Neural Network inference proposed in
Shafi et al. [56]. Layer marked (Inference Engines) will be explored in this dissertation.

un-optimised DNN models. If the base (non-optimised) models suffer from over-fitting
problems, TensorRT optimisations (e.g. weight quantisation) can reduce it, maintaining
accuracy or even providing slight improvements. Shafi et al. [56] shows a significant
gain in image throughput from model optimisation through TensorRT. It also highlights
that some models require additional time to copy the TensorRT-optimised models into the
GPU memory. The findings suggest that TensorRT should be considered when proposing
an edge system based on DNNs. However, the work does not fully address important
metrics for embedded applications, including the impact of TensorRT optimisation on the
energy consumption of edge systems. It is difficult to evaluate the practical implications
of TensorRT for the models studied because it is not easy to analyse the optimisation gains
under the resources used.

Joshi et al. [28] explores the challenges of pushing deep learning methods into an
”All-in Edge paradigm”. First, the paper defines ”Edge Intelligence”as the convergence
between AI and Edge computing. To facilitate AI modelling closer to the data generation
source, focusing on decentralised and distributed architectures. It is cited how the boom of
IoT devices led to a paradigm shift in using Deep Learning. From cloud-only centralised
deployment to the distributed model enabled by Edge computing. Among the research
questions addressed by the work, we highlight ”What is the standard Key Performance
metric to compute for the All-in EDGE paradigm?”. The paper then discusses a series of
important metrics for the Edge paradigm.

• Training Loss: It captures how well a DNN model fits the training data. Different
metrics are selected based on the type of problem, i.e., classification or regression.

44

• Convergence Rate: It defines the number of iterations one algorithm will take to
converge on an optimum solution.

• latency: Computational Latency estimates the time the DNN model will require
to process a query input and infer over it.

• Communication Cost : Active monitoring of the communication cost is important
to ensure concise data flow and prevent any potential congestion points.

• privacy: Privacy-preserving metrics help quantify users’ freedom of privacy when
an application offers privacy protection.

• Power consumption: For some resource-constrained environments, it becomes
unfeasible to host models with a larger energy footprint. The energy requirement
of a DNN model should be considered for both the training and inference phases.

• Memory footprint: Edge Devices usually have limited resources, and it becomes
challenging to host a DNN model because of its computational requirements.

Finally, this work presents open challenges within the Edge paradigm and offers fu-
ture directions deserving of further studies. Latency, Memory footprint and privacy are
categorised as the main challenges in the area. The importance of these metrics are of
the utmost for evaluating edge-deployed applications. However, the work leaves out the
importance of the energy-related aspects of the models. Although listed among the main
metrics, the work does not explore in which ways the energy dependence affects the mo-
dels. Limitation in terms of power supply is a fundamental issue in Edge computing. In
this way, the work poses a significant problem that needs addressing. It becomes clear
that taking these models to the edge is not a straightforward task, at least if some functi-
onal and non-functional constraints need to be preserved. The effects of power usage and
the system limits for this are topics that practitioners (e.g. ML data scientists and data
engineers) will follow closely.

An analysis Table 2.3 suggests apparent gaps in the literature. Transitioning ML mo-
dels to the edge certainly has challenges relevant to edge computing research. But a signi-
ficant challenge is the energy efficiency of the embedded models. In addition, key-related
work explores model performance in terms of accuracy without bringing the complete
picture of performance against resources used. Also, it is crucial to understand which
costs (i.e. also called ”taxes”) are presented when taking the models into the context of
Edge computing. Finally, essential techniques, including quantisation, are necessary to
optimise models. The list below summarises some of the open issues identified in the
literature:

• Lack of performance-watt profiling. The surveyed work analyses performance, ac-
curacy and CPU and GPU usage. An analysis of power consumption as part of the

45

duo factor performance-watt metric is lacking. This is key information for edge
computing. For instance, Bianco et al. [3] explores CPU and GPU usage without
considering power consumption. Buch et al. [6] lacks power profiling of the sys-
tems.

• Cold inference. The work Yi et al. [70] does not show the relationship between cold
inference and possible overheads related to available resources.

• Lack of optimisation techniques profiling. The impact of model compression tech-
niques goes beyond the accuracy of the inferences. Also, the power consumption
impact that arises from such optimisation heuristics needs to be considered. For
instance, the optimiser features are not fully explored in the work Shafi et al. [56]

To bring complex deep neural network models to edge devices, the following questi-
ons need to be addressed:

• (RQ1) What is the performance and accuracy impact of taking cloud-based models
to resource-constrained devices at the network edge? This is the guiding question
and represents the issue identified across the related work.

• (RQ2) What is the power footprint in running machine learning classifiers in
microscopic-level image bench-top analyser devices? And what is the impact of
edge device software libraries on the deployed models in terms of performance-
watt? This question addresses the important optimisation techniques and heuristics
that can be used, focusing on a case study (e.g. image classification task).

The present work explores these two questions in more detail in the following chap-
ters.

46

W
ork

Y
ear

A
uthors

R
esearch

A
im

O
pen

G
ap

B
ianco

etal.[3]
2018

D
eep-L

earning
B

enchm
ark

T
he

w
ork

offers
a

com
prehensive

view
ofa

series
ofm

odels
in

the
literature.

A
lthough

the
authors

analyse
the

m
odels

in
a

strictenvironm
ent,perform

ance
factors

are
considered

w
idely.H

ow
ever,in

resource
use,the

w
ork

is
lim

ited
to

reporting
the

m
em

ory
use

ofthe
m

odels
in

the
experim

ents.C
PU

and
G

PU
usage

is
hidden

behind
m

odeldata,w
ith

no
experim

entalsupport.T
he

w
ork

exem
pts

itself
from

an
analysis

ofthe
use

ofthe
pow

erofthe
m

odels,even
perform

ing
em

bedded
experim

ents.W
ithouta

detailed
analysis

ofthe
energy

used
to

run
the

experim
ents,

itis
challenging

to
assess

the
costs

related
to

the
perform

ance
ofeach

m
odel.

Y
ietal.[70]

2022
C

old
Inference

T
he

characteristics
cold

inference
are

presented.T
he

w
ork

does
notshow

the
relationship

betw
een

cold
inference

and
possible

overheads
related

to
available

resources.T
he

effectofcold
inference

on
perform

ance
is

clear.
H

ow
ever,itis

difficultto
assess

the
dam

age
done

w
ithoutan

analysis
ofthe

m
odels’consum

ption
profile

during
the

phenom
enon.

B
uch

etal.[6]
2021

A
IO

verheads

In
this

w
ork,differentform

s
ofA

I-related
overheads

are
explored.H

ow
ever,the

w
ork

leaves
outoverheads

related
to

the
softw

are
layerform

odeloptim
isation.A

s
the

focus
ofthe

w
ork

is
on

the
em

bedded
w

orld,this
class

ofsoftw
are

cannotbe
ignored.T

he
w

ork
explores

the
conceptofA

ITA
X

and
studies

the
overheads

ofprocess
steps

in
addition

to
inference.H

ow
ever,the

w
ork

does
notexplore

the
energy

im
pacts

of
these

steps.U
nderstanding

how
each

step
affects

overallpow
erconsum

ption
is

essentialto
understanding

the
trade-offs

ofeach
m

odelused
in

an
application.

Shafi
etal.[56]

2021
TensorR

T
C

haracterisation

T
he

w
ork

com
petently

analyses
the

perform
ance

ofTensorR
T

on
an

em
bedded

platform
.H

ow
ever,the

w
ork

does
notelaborate

furtheron
the

analysis
ofthe

energy
footprintofthe

tool.T
he

results
indicate

the
clearand

visible
effects

of
TensorR

T
on

the
m

odels.

3 EVALUATION METHODOLOGY

This chapter introduces the methodology used to carry out the experimental work,
including how we built the image classification system in the edge device to undertake
the experiments. The chapter also explores the phytoplankton dataset and the associated
model trained from such data. The chapter also proposes an experimental design to eva-
luate and extract relevant information from the models embedded in an edge device. The
evaluation metrics are introduced and their importance for the applications in general, and
superficially for phytoplankton image classification – a case study of interest.

3.1 System Profiling to the Transition Challenge

Transiting cloud-based ML models to the edge carries a series of challenges. Some
steps should be taken to properly run the models in the target device under the TensorRT
optimisation regime. Such challenges are framed as follows:

• Build an embedded system environment.
First, we need a stable environment to take the cloud-based models and deploy them
to the edge. This embedded environment can run TensorRT and perform experi-
ments to explore the power footprint of the models in base and optimised versions.
This is a crucial step in the Transition Challenge as it guarantees that the target
device (Jetson NANO) can carry out the experiments. Although, NVIDIA claims
TensorRT to fully compatible with all NVIDIA hardware, it has been originally de-
veloped for desktop hardware. Using the tool on the Jetson NANO device proved
a little more complicated. Different from what is indicated, some manual work is
required for the tool to be used on the Jetson NANO, such as creating a virtual
environment to encapsulate the project1.

• Use TensorRT to create derived versions of models for benchmarking.
Once we ensure that our platform for experiments is ready, we can use the Ten-
sorRT tool to generate the optimised versions of the classification models. This

1Some dockers are available, but most of them are not compatible with the Jetson NANO

48

way, the experiments can be performed with some optimisation variations: base
model, TRT-FP32 and TRT-FP16. As TensorRT generate an inference engine for
the architecture where the optimisation is carried out, most available examples of
TensorRT converters are made with the TensorFlow 1.x. NVIDIA documentation
on TensorRT highlights how to create a converter using the most recent TensorFlow.
Such a converter is used within the target device. This is due to the optimisation
operation leaving behind architecture-specific operations. The end result is the mo-
dels in the base form, and the optimised versions for the target device.

• Select Dataset and Classifier Models
Our choice of data and the ML models used in experiments are essential to carry
out this research work. Models and data are the two cornerstones of any DL clas-
sification solution. The target dataset deployed through the integration pipeline
proposed in Guterres et al. [21] has been used. The data and model requirements
from the ASTRAL project have helped to specify a typical workflow pipeline. A
series of models are selected for deployment on the edge. Each model is optimised
with TensorRT to generate performance and resource consumption benchmarking
results.

• Define the most relevant metrics.
A key part of any research work is understanding what we are looking for. To
properly evaluate the project and its experimental results, we define by which rule
we will measure it. So we should survey relevant metrics to help the evaluation
efforts, ensuring that such metrics will measure how well the Transition Challenge

is accomplished.

• Develop a standardised testing regime.
To use the evaluation metrics, we should create an experimental regime. Once the
models and their versions are all available and running satisfactorily on the device,
they should run in a standardised way. While the scripts that launch the experiments
run, a parallel logger collects data from the edge device. The logger interfaces di-
rectly with the Jetson NANO and provides energy and computing resource usage
data. The experiments were constructed to separate the essential parts of the algo-
rithm so that the analysis could be done over the most relevant data. The warm-up
inference step, in particular, was added later just after we detected that the first in-
ferences tended to be slower. After this, research on cold inference has been carried
out.

• Data Aggregation.
The data generated for each model should be aggregated in a broad format to use
the selected metrics. After this raw data is cleaned and formatted, it is ready for

49

the metrics to be used. In the end, analyses that cross the metrics, focusing on the
performance-watt relation, are offered as a contribution to the evaluation aspects.

3.2 Case Study: Phytoplankton Dataset

A substantial part of the ASTRAL project is related to the early detection and warning
of HABs. To this end, it is necessary to research AI and image classification to deploy
efficient, intelligent systems capable of classifying microscope-level organisms among
phytoplankton populations. A cornerstone for efficiently developing such classification
systems is the availability of datasets enriched with information on various classes.

Figure 11: Genus of interest and countries interested in each one. [62]

ASTRAL IMTA labs provided a list of target phytoplankton species and genera for
early HAB detection purposes (Fig 11). However, the literature does not satisfactorily
present a dataset of phytoplankton images with the scope and richness necessary for our
case study. The species of interest to the ASTRAL project appear diffusely spread in
several datasets. Theoretically, it can aggregate several datasets to cover multiple species
of interest. However, different datasets format their data in the most implicit internal
ways. It is imperative to develop standardisation methods that allow using these diffuse
data for classification. We deploy an integrated dataset comprising as many species of
interest as possible using the integration pipeline proposed in Guterres et al. [21].

The data integration pipeline consists of publicly available image datasets (at a mi-
croscopic scale) that cover phytoplankton genera collected from aquaculture facilities in
several countries. The image database includes representative grey-scaled images for the
harmful phytoplankton classes that create blooms within target aquaculture facilities. Mo-
del training has used this dataset to adjust the parameters of Convolution Neural Networks

50

(CNNs) architectures. Figure 12 depicts microscopic-level phytoplankton image exam-
ples used to build the image classifier. The integrated dataset contains around 81,391
images across the target phytoplankton genera. It has been split into training (80%) and
testing (20%) datasets. The training has been a cloud-based server, whereas the testing
has supported the edge AI experiments (inference task) carried out in this work. The final
dataset contains classes that reflect the following genera of interest: Alexandrium, Ana-

baena, Chaetoceros, Dinophysis, Gonyaulax, Lingulodinium, Nodularia, Prorocentrum,

Pseudonitzschia, Skeletonema, and Thalassiosira.

Figure 12: Phytoplankton image examples (50+ times magnification). High intra-class
variability, inter-class similarity and imbalanced scenarios bring issues for the practical
identification of phytoplankton organisms.

3.3 Classifier Models

The literature has a wide range of models for image classification. Within ASTRAL,
the modelling team tested a series of models to select the most suitable option regarding
the accuracy and similar metrics. The selected models to be deployed at the edge device
are, as follows: MobileNET V2 [26], NASNet-Mobile [74], Inception V3 [63, 62] and
VGG [58]. The model training relied on the case study data (phytoplankton datasets)
and transfer learning from ImageNet. The training was performed in a cloud machine
equipped with an NVIDIA GPU Pascal family (e.g. 3090). This step output is a standard
TensorFlow model for cloud-based applications. We also evaluate the potential advan-
tages of model optimisations for taking the standard TensorFlow model (cloud-trained)
to an edge device (optimised). To achieve this, the work used the optimisation engine

51

TensorRT.

3.3.1 MobileNET V2

The MobileNet architecture [26] is a simple but efficient CNN focused on mobile
vision applications. This model is widely employed in many real-world applications, in-
cluding object detection, fine-grained classifications, face attributes, and localisation, es-
pecially on embedded devices. It introduces depthwise separable convolutions. A form of
factorised convolution that factorise a standard convolution into a depthwise convolution
and a 1×1 convolution called a point-wise convolution. The idea is to replace a full con-
volutional operator using a factorised version that splits it into two separate layers. First,
it performs light filtering by applying a single convolutional filter per input channel. The
second layer is a 1 × 1 convolution that builds new features through linear combinations
of the input channels.

Figure 13: MobileNet: evolution of separable convolution blocks. The diagonally hatched
texture indicates layers that do not contain non-linearities [52].

The MobileNetV2 paper [52] then advances this architecture by adding a novel layer,
the inverted residual with a linear bottleneck. It takes a low-dimensional compressed
representation as an input, which is first expanded to a high dimension and filtered with
a lightweight depthwise convolution. Features are subsequently projected back to a low-
dimensional representation with a linear convolution.

3.3.2 NASNet Mobile

The Neural Architecture Search Network (NASNet) original paper [74] develops an
optimal CNN architecture. NAS stands for Neural Architecture Search and is a technique
developed for searching through a space of neural network configurations. The novel idea
is to search for the best combination of parameters of the given search space, including

52

filter sizes, output channels, strides, and number of layers, among others. The reward
in this reinforcement scenario is the accuracy of the searched architecture on the given
dataset. The general setup of NAS involves three components :

1. Search Space

2. Search Strategy

3. Performance Estimation Strategy

Search Space defines the space of all possible architectures concerning a given pro-
blem. For example, one can view neural networks as a function that transforms input
variable ’X’ into output variable ’Y’ through various operations, including convolutions,
pooling and activation functions. The search strategy estimates the best architecture for
performance and avoids the testing of poor models. There are many search strategies,
and the list can include Grid, Random and Gradient-based Searches and others. In per-
formance estimation, the NAS algorithm evaluates the performance of a possible neural
network from its design without building and training it. For every architecture in the
search space, it can return the estimated performance in accuracy terms.

3.3.3 Inception V3

The Inception V3 [63, 62] is an image recognition CNN architecture that integra-
tes many ideas proposed by multiple researchers over the years. The model comprises
symmetric and asymmetric building blocks, such as convolutions, average pooling, max
pooling, concatenations, dropouts, and fully connected layers. This model increases depth
and width without causing computational strain compared with past approaches.

Figure 14: Inception V3 model architecture: schematic view [62]

The whole idea is that, in many cases, several connections between layers of a model
are ineffective and have redundant information related to their correlation. To exploit this
fact, this architecture introduces an ”Inception module”, a sparse CNN builds from 22

53

layers with internal parallel processing. It benefits from auxiliary ”internal”classifiers in
the hidden layers to improve its data-oriented and discriminatory capacity. While past
CNNs, such as AlexNet and VGG, use either a convolutional or a pooling operation in
each layer, the Inception module can use both at each layer. The convolutional filters with
different sizes are present in the network layers, thus providing more detailed information
on extracting patterns in various sizes. The bottleneck layer, a 1 × 1 convolutional layer, is
used to decrease the computational complexity. The bottleneck layer reduces the number
of parameters leading to a network learning deeper representations of features with fewer
parameters (compared to past model approaches).

3.3.4 VGG

The VGG network architecture is another proposal for a deep convolutional neural
network [58]. VGG is an acronym for the Visual Geometry Group at Oxford University,
which proposed the architecture. The VGG model investigates the depth of layers with
a tiny convolutional filter size (3 × 3) to deal with large-scale images. Each VGG block
consists of convolutional layers, followed by a max-pooling layer. The same kernel size
(3 × 3) is used in each convolutional layer. After each convolution, a 1-size padding step
is used to keep the output size normalised. The VGG16-derived architecture comprises
13 convolutional layers, five max-pooling layers, and three fully connected layers.

Figure 15: Jetson-Stats interface.

54

3.4 Logger

To collect data in each of our experiments we build and deploy a imple logger script
based in 2. Gathering data on power, memory consumption, GPU consumption, etc is
essential for this work. It consists a fundamental step in its development cycle. The
package (Jetson-Stats) selected offers a series of functionalities to monitor and control
devices from the Jetson family. Jetson-Stats is a powerful tool to analyse the board in
parallel with our main application. It offers a basic interface (Figure 15) for instantaneous
monitoring and an API to build custom solutions to better suit our needs. We use the
Jetson-Stats’ API to deploy a python based script to collect and gather relevant data from
the board. Each result explored in this work as collected in this manner.

After collection the data is aggregated, cleaned and normalised in a simple spreadsheet
so we are able to extract the graphs and offer analysis. This process was a simple one but
laborious as the logger is a external software to the experiments, so the timings of the data
samples were meticulously paired with the timestamps of the experiments.

3.5 Experimental Design

This session explores the experimental design aligned with the application use case –
the Phytoplankton Classification. The ASTRAL research on phytoplankton classification
is divided into phases (Figure 16) covering different application development aspects: (1)
In-situ, (2) Data Science, (3) Edge Computing and (4) Analytics Phase. The In-Situ phase
includes the hardware and software of the phytoplankton sensor tasked with image acqui-
sition to be inputted into the deployed model. video capturing represents the majority
of hardware development on this work front. Next, the software is represented by Frame
Extraction and Speciment Segmentation, where the collected data is pre-processed be-
fore being used in the models. The Data Science phase handles the required data and
models for the classification application. The Data integration step is a process related
to the pipeline reported in Guterres et al. [21], deployed in this work to build a target
dataset containing the relevant phytoplankton genera. During the Model Training, the
different models available in the literature are trained using the dataset created previously.
The Cloud Inference allows models to be evaluated in search of the best parameters and
models.

The Edge phase is crucial for this dissertation work. The first step – Model Opti-
misation – comprises using the TensorRT library alongside the cloud-trained models to
generate the optimised inference engine. This step contains the first tests of TensorRT
on the embedded platform and causes the variants of each model to be tested. Next, the
Edge Inference builds the Jetson Nano environment that supports the optimised models.

2github.com/rbonghi/jetsonstats

55

Model TrainingData Integration Cloud Inference

Data Science Phase

Frame
ExtractionVideo Capturing

Speciment
Segmentation

In- Situ Phase

Edge Inference

Model
Optimisation

Edge Phase

Power And
Performance

Results
Analysis

Analytics Phase

Figure 16: Workflow of ASTRAL phytoplankton classification application. This work-
flow is typical in many other image classification applications.

This step involves the hard coding to integrate the models into the Jetson NANO, and,
subsequently, usage for inferences. The results reported in this work are generated by
varying each selected model.

The Analytics handles the results generated when deploying to the edge including
Power and Performance information associated with model deployments. The Result
Analysis step assesses the output performance and resource consumption metrics custo-
mised to the embedded systems.

3.5.1 System Setup

The present work carries out a set of experiments on a Jetson Nano platform to assess
the effects of taking a model trained in a cloud-based environment to edge computing
platform (representative). In this regard, the virtual environment3 was built in the Jetson
NANO to support the necessary frameworks and libraries (e.g., TensorFlow, CUDAnn,
TensorRT). TensorRT engine optimised the models for the target underlying system. An
experimental regime runs on the base models and variations. Performance and resource
consumption data were collected for analysis.

The TensorRT executes optimisation and compression steps (Figure 8). In the end, a
quantisation step provides an optimised model called an inference engine. Each selected
model has been optimised in this work using two quantisation options. This quantisation
step allows the model to operate only in the desired arithmetic range. The first uses a 32-
bit float-point (TRT-FP32), and the other a 16-bit float-point (TRT-FP16). Both are also
referred to as optimised models. This pipeline is briefly observed in Figure 18. The base

model is the unmodified TensorFlow model created in the cloud environment, running
in the edge device; whereas the optimised models are the base model that went through

3https://virtualenv.pypa.io/en/latest/

56

Figure 17: (a) Jetson Nano platform and (b) the experimental system setup.

the TensorRT optimisations. The following AI models and variants are considered and
compared with respect to power consumption, resource usage and classification inference
accuracy, as follows:

Base Model

Import Model

TensorRT

TRT- FP16

TRT- FP32

Figure 18: TensorRT: top level view for Optimisation and Quantisation processes. The
system imports the cloud-based model trained on the integrated dataset in a high-resource
environment. The TensoRT provides an optimised inference engine as the output for the
selected quantisation range, namely TRT-FP16 and TRT-FP32.

• base model: The original architectures (MobileNetV2, NASNetMobile, Inception
and VGG), each trained with the integrated phytoplankton dataset in a cloud-based
environment, but running in the Jetson NANO device.

• TRT-FP16 model: base model transformed through TensorRT optimisations. Ten-
sorRT performs model optimisations, including quantisation of 16-bit floating
point.

• TRT-FP32 model: base model, also transformed through TensorRT optimisations.
A 32-bit floating point quantisation is applied.

57

Each model and its variants underwent an experimental regime to benchmark perfor-
mance and system resource usage.

A major issue in our development cycle was the integration of TensorRT with the
Jetson NANO board. NVIDIA claims a Plug-and-play relation between their software and
hardware, without the need for extensive configuration or customization. However, in this
case the integration doesn’t work as intended, resulting in challenges and inconvenience.
To overcome such challenges, we scour for driver updates, compatibility issues, and to
follow Nvidia available instructions carefully. Dependency management took a long time
to resolve as conflicts between packages and versions start to show. Resolving these
conflicts can be challenging and time-consuming, such conflicts can be summarized as:

• Conflicting dependencies: Different packages can have conflicting dependencies,
making it difficult to install and configure them together. In our case many Ten-
sorRT related packages have deep dependencies needed to work properly. The
abundance of needed packages and their complex web dependencies was a tough
to configure. In many instances to proper configure a set of dependences break the
ones for another package.

• Version compatibility: Dependencies in many cases involve outdated versions that
may not work with newer versions of other coexisting packages. Updating these
packages cause compatibility issues on its own as different packages may require
different versions of the same other package. This problem was persistent as many
packages automatically install the version of their dependency more suitable for its
current version.

• System conflict: Both previous problems culminated in the circumstance where
many versions specific packages conflict with the ones in the wide scope of Linux.
So, the whole process was made within a virtual environment. This solution allowed
a packed system containing all the right dependencies and right versions.

3.5.2 Experiments

The resulting AI models are installed into the Jetson NANO platform supported by a
virtual environment. The experimental work has been split into steps to evaluate better
how different AI model execution stages can influence the performance, energy profile
and resource usage on the edge device. The steps have valid roles in running the model
for inference purposes. In addition, a monitoring logger software runs in parallel with
the model execution to gather measurements for resource usage and energy consumption.
The steps are detailed below, sequentially:

• 1 - Loading Model - Initial processes such as loading packages, initialising varia-
bles and establishing the DL model for the inference task.

58

• 2 - Extracting Infer Engine & Returning Batch - Transparent steps without high-
level libraries (e.g. Keras). These operations should be performed manually at this
abstraction level to provide the code with the data and structure capable of passing
it through the model.

• 3 - Warm Up Rounds - Performance discrepancies are observed between the initial
and last rounds of data inference on GPU. In the first rounds, it is still necessary to
cache data and other procedures. So warm-up rounds are important to avoid ”cold
start”problems.

• 4 - Real Rounds - This last stage includes the inference rounds when energy profile
and resource usage are assessed.

Each step of the experiment has its own significance. The first two steps comprise
the essential base code to import everything needed, extract the data structures from the
model and format the data so the model can use them. High-level frameworks usually
have such steps performed transparently. However, using TensorRT forces us to build the
experiment algorithm without these facilitators, so the steps must be done manually. Then
a set of inferences is executed to avoid problems related to cold inference, as reported in
Yi et al. [70] and discussed in the previous chapter. This cold inference behavior was a
point of tension in the development of the present work. Discrepancies in the results of
experiments before and after ”warming up”were identified early in our experiments. As
we identify such expressive change in results after an warming up window we focus the
research work on the characterisation of this phenomena.

We fine tune the length of the warmup phase to extract most of the already warmed
inferences. If the warmup phase were too small the overall time cost of the experiment
becomes distorted. In other hand if its to long we also start to waste time away from our
inferences of interest. In theory each model has a optimal number of warmup inferences,
however 10% of the real inferences was adopt to guarantee standardization of experi-
ments. After we adopt the 10% a long set of experiments were made only to observe if
this quantity of warmup inferences were ideal.

3.5.3 Performance and Energy Metrics

We consider multiple performance and resource usage metrics to provide a fair com-
parison. Precisely, we measure Image Throughput, Accuracy rate, Memory Consumption,
Power Consumption, and CPU and GPU usage.

3.5.3.1 Image Throughput

When embedding a model into an edge device, a key system aspect with relative
improvement expected is the latency offered. The Image Throughput metric gives an

59

estimation of the image classification speed at the device (in Frames Per Second - FPS).
FPS is a standard performance metric unit, widely used in this classification domain. FPS
stands for the number of images per time unit that traverses the model to accomplish
the inferences. We report and analyse the FPS metric to better explore the experiment’s
effects and costs of the inference task. In addition, one should address the overhead in the
system resource usage.

3.5.3.2 Accuracy

Accuracy is a widely used and intuitive metric to evaluate model quality, commonly
used in image classification problems. In simple terms, it is the ratio of correctly predic-
ted observations to the total number of observations in the dataset. We estimate Top-1
accuracy based on testing the image set of the integrated dataset tailored for aquaculture
application needs. Shafi et al. [56] report that TensorRT can achieve similar (and even
slightly better) accuracy results to models originally intended for cloud usage. Howe-
ver, comparing cloud-based and optimised model versions from an accuracy viewpoint
remains vital to the identification of possible trade-offs between model optimisation and
possible performance gains on edge devices. Mathematically, accuracy is calculated using
Equation 1.

Accuracy =
TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNEgative
(1)

3.5.3.3 Memory Consumption

We report on the total system memory consumption and a complete memory usage
profiling in each experiment undertaken. Memory is very limited in embedded systems,
and monitoring this resource closely is crucial.

3.5.3.4 Power Consumption

Power consumption of the base and edge-optimised models is assessed to understand
the TensorRT impact on the edge applications. In addition, the energy profile of the base
and optimised models are compared. We also evaluate the ratio between FPS and power
consumption to build a performance-watt, which is a modern view of performance evalu-
ation reliant on a 2-dimensional metric that fuses performance with power consumption
aspects (in this case, possible FPS gains and energy resource usage).

3.5.3.5 CPU Usage

The Jetson Nano is a mid-range edge system equipped with a quad-core ARM pro-
cessor. However, a powerful one for the embedded devices world is far inferior to the

60

high-end processors available in a cloud-based environment. So it is essential to observe
how much of this hardware resource is spent on the inference.

3.5.3.6 GPU Usage

The critical aspect of image classification is the heavy use of GPU-related operati-
ons. The Jetson Nano is again equipped with powerful hardware for embedded standards,
such as the 256-core Maxwell GPU. But still, this is an entry-level GPU which cannot
be compared to the computing resources available in cloud environments. The task of
bringing DL-based classification models to the edge requires investigating how much of
this resource is needed to perform edge-based inferences for applications.

4 RESULTS AND DISCUSSION

This section presents the experimental results, including further details on comparing
the base model against its optimised versions. This work exploits the image classification
task (our case study) through four ML models trained on the dataset of microscopic-
level phytoplankton images. All models (base and optimised) were deployed into the
Jetson NANO embedded system. A note here is that the base model is the unmodified
TensorFlow model created in the cloud environment, running in the edge device, whereas
the optimised models are the base model that went through the TensorRT optimisations.

4.1 Accuracy

We evaluated the accuracy using a testing dataset with around 16,000 images, around
25% of the training dataset. The AI models (base and optimised versions) were deployed
into the Jetson NANO platform for inferences on the testing dataset. The achieved accu-
racy for the base model versions are as follows: MobilenetV2 - 97%, NASNetMobile -
97%, Inception - 95% and VGG - 91% (please refer to Table 4.1 for a full account).

Table 3: Accuracy of each model and its variations.
CLOUD BASE TRT-FP32 TRT-FP16

MobileNetV2 97.36% 97.35% 97.35% 97.35%
NASNetMobile 97.10% 97.09% 97.06% 97.06%

Inception 95.05% 95.05% - -
VGG 91.45% 91.44% - -

Each model’s base version achieves a reasonable classification accuracy for the phyto-
plankton species of interest. Moreover, the accuracy is compatible with the one obtained
during the validation tests in the cloud. This result was expected, as the model parameters
calculations remain unchanged despite the model deployment in a low-memory, constrai-
ned device. When evaluated on the same testing dataset, both optimised model versions
(TRT-FP16 and TRT-FP32) reached a similar accuracy level compared to the counterpart
base versions for the MobileNetV2 and NASNetMobile. This result confirms Shafi et al.
[56] findings that TensorRT optimised models tend to achieve reasonably comparable ac-

62

curacy results to their non-optimised model versions.

All four models at the edge behave similarly to their counterparts in the cloud-based
environment. The optimised models successfully validated on the edge device (Mobi-
leNET and NASNetMobile) present the same levels of accuracy. The MobileNET was
superior by a small margin in accuracy. The models edge deployment did not present
a notable decrease in accuracy. Our results reproduced what was also remarked by the
ASTRAL data science team. Fairly stable accuracy levels when optimising the models
indicate that data-to-model over-fitting risks have been mitigated. Overall, MobileNET
accuracy performed better than the other models on the phytoplankton dataset. Since the
accuracy difference across models was very small, other metrics will play a central role in
demonstrating the most suitable model for the classification application at hand. The AI
research community (NeurIPS 2019-2022) has pursued other metrics to assess the qua-
lity of ML models quality which track the distortion of embeddings into vector spaces.
Although this is relevant, it is out of the scope of this work.

4.2 Image Throughput

In this section, we report the inference speed of the analysed models. This metric
is crucial for us to measure the applicability of the models and their variations in the
real-time environment of the target application. Classifying the pre-processed images
at a high frame rate is essential, so there are no bottlenecks in the process. A typical
video application frame rate is anything between 15 and 30 FPS. However, such rates
are the speed of a standard video, typically for object detection applications, and may
vary depending on the application. Therefore, any FPS improvement is welcome. For
instance, FlowCAM shoots around 100 images per second from the samples. However,
the manufacturer does not disclose in the technical documentation how long it takes to
deliver the cropped images and their associated labels.

Figure 19 presents the image throughput (in FPS) across all models and their varia-
tions. The plotted data suggests that the TensorRT optimisation engine plays a crucial
role in performance across the experiments. First, it yields a substantial Throughput gain
for both models successfully executed in the Jetson NANO device (NASNetMobile and
MobileNet). Second, the inference throughput doubled on the edge device with TensorRT
optimisation. Finally, both optimised options (TRT-FP32 and TRT-FP16) doubled image
inference throughput in each case. Such an improvement is expected because the engine
puts tremendous effort into model optimisation. These results support the initial feasibi-
lity assumption of using TensorRT on edge devices for an image classifier system.

63

Figure 19: Image throughput results in FPS across all models and versions. Each section
is a different model. In sequential order: NASNetMobile, MobileNet, VGG and Incep-
tion. Inside the sections, versions are organised as follows: base version, TRT-FP32 and
TRT-FP16 versions. As the VGG and the Inception models could not be successfully tes-
ted in the Jetson NANO, those sections have empty gaps for the optimised version results.

4.2.1 NASNetMobile

The NASNetMobile model obtained the best results in terms of image throughput.
The model running its base version on the Jetson NANO reached 40 frames per second.
However, this model doubled its image throughput after TensorRT optimisations, achie-
ving over 80 FPS in both optimisation options. The TRT-FP32 version achieved 83 FPS, a
promising figure for edge-based in-situ real-time phytoplankton classification. TRT-FP16
version achieved a slightly better result (87 FPS), considered the best mark among all
models and variations. The TensorRT documentation1 indicates a significant difference
between the various options. However, this difference is expected to vary depending on
the model used and the target platform for optimisation.

4.2.2 MobileNET

Initially, this model outperformed NASNetMobile by a virtually negligible margin.
Then, the model reached 41 FPS, being on the same order of magnitude as NASNetMobile
and surpassing it by just one frame per second. Its optimised versions followed the pattern
of a gain of around 100% in image inference throughput. The TRT-FP32 version had a
slightly lower gain than the previous model, but it doubled the throughput result, achieving
82 FPS. The TRT-FP16 version reached 84 FPS.

4.2.3 VGG and Inception

VGG’s base model reached 17 FPS, a result well below the previous models for image
throughput. Inception’s base model, in turn, achieved a mere 5 FPS, an even poorer result

1https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html

64

Table 4: Coefficient gain of model’s variations (successfully completed).
NASNetMobile Mobilenet

TRT-FP32 2.075 2.000
TRT-FP16 2.175 2.049

in image inference throughput. Moreover, as reported at the beginning of the section,
the VGG and Inception models could not be fully executed for their TensorRT-optimised
versions. After the optimisation process for the Jetson NANO hardware,

The optimised models attempted to run many times, constantly failing due to extensive
memory usage. We explore in later sections the nature of this error and how the models
behaved from the point of memory consumption. The lack of optimised versions of VGG
and Inception is detrimental to establishing the best option for classifying phytoplankton
at the edge. However, the poor results of the base versions of each model architecture
indicate that it would be difficult for these models to surpass the first two choices, as
reported in the previous sections. Table 4 shows the gain coefficients of the optimised
models relative to their base versions counterparts. In all cases, the coefficient remains
around two. We can hypothesise how these models would behave concerning this metric
by applying the best-known case (NASNetMobile TRT-FP16) to the VGG and Inception
models. VGG could reach around 37 FPS and Inception around 11 FPS. The models
cannot overcome MobileNET and NASNetMobile even in their base versions with no
optimisation. But, of course, this is just an extrapolation from the available data.

We report the results in terms of image throughput across all tested models. Regarding
raw FPS numbers, the TRT-FP16 version of NASNetMobile showed the best results. This
version of the model was the closest to the FLOWCAM throughput. Considering that
FlowCAM only presents the rate with which it captures the images, not the one it uses
to classify. A low-cost system similar to the one pursued by the ASTRAL project could
be well served by a classification tool with this type of throughput performance. The
MobileNET TRT-FP16 is a closer second place. The difference between MobileNET and
NASNetMobile in each version is slight, so the other metrics could enhance the analysis
of differences in all models.

4.3 Power Consumption Profile

Power consumption is crucial in designing embedded edge devices, as the system can
operate entirely on a battery pack. Power and energy profiling help understand the deve-
loped solution’s applicability to the target environment, considering resource-constrained
devices. An off-grid device is essential to take technology to the far edge of the end user.
Analysing how running models change the device’s energy consumption profile is im-
portant for performance and understanding resource usage trade-offs. The energy profile

65

of each experiment (model and variation) will be reported. The power consumption is
split into the following system steps: (1) Loading Model, (2) Extracting Infer Engine &
Returning Batch, (3) Warm Up Rounds and(4) Real Rounds.

4.3.1 MobileNetV2 Base Model

This experiment employs the base model MobileNetV2 (i.e. running an unmodified
base model with no optimisations). Figure 20 presents the power consumption in sections
related to the previously mentioned steps. First, the Loading Model step uses a conside-
rable slice of the total experiment time, keeping energy consumption low and constant
over time (around 2900mW). This first stage contains the library and package loading
processes the automation scripts require. Maintaining low consumption, practically at a
baseline level of the device, is very much desired. The energy profile does not show any
spikes or excessive fluctuations at this stage. The second stage is tiny time-wise, and the
energy is at similar levels to the first stage but slightly below (around 2800mW).

Figure 20: Power consumption: MobileNetV2 on the Jetson NANO platform. The y axis
is the instantaneous power (in milliWatts); x axis is the time (in samples)).

The warm-up rounds step shows relevant results. As reported in the literature, GPU-
equipped edge devices can suffer from cold start-related issues when the system setup
overhead time dominates [70]. These experimental rounds aimed at avoiding possible
effects of cold start in assessing performance and power consumption. The power con-
sumption remains relatively constant, even decreasing, to the point where cold start issues
are probably left behind. The mean value of the complete step is around 3100mW . At
the end of this step, it is possible to observe a significant increase in energy consump-
tion. These problems cease at this point. It indicates the possibility of the experiment
having excessive warm-ups. However, to keep the experiment standardised, all models
run the same amount of warm-ups. At the end of the experiment, in the last stage, energy
consumption skyrockets. And it remains high throughout the inference process (around
6100mW). This is expected because, at this stage, the inference process fully uses the
Jetson NANO GPU. At the end of the experiment, energy consumption drops sharply to

66

the probable baseline consumption of the device.

4.3.2 MobileNet TRT-FP32

Next, we report the experiment with the MobileNet optimised with the TRT-FP32
option. Power consumption follows a similar pattern to the base case in the first two algo-
rithm steps (Figure 21). Siting around 2600mW for both phases, this decrease can point
to the slower import process, leaving the processing aside. However, the first stage lasts
much longer (doubled number of samples). It indicates that the device has more diffi-
culty loading the TensorRT engine than the base model experimental scenario. The extra
time is reported in TensorRT-related technical user forums, as TensorRT forces the loa-
ding of entire libraries into RAM to function properly. Therefore, it imposes considerable
overhead (i.e. ”higher tax”) on the overall power consumption [6]. A more significant
up-time could dilute the system tax.

Figure 21: Power consumption: Jetson Nano System running the MobileNetV2 with
TensorRT FP32. The y axis is the instantaneous power (in milli Watts); x axis is the
time (in samples).

The TRT-FP32 model causes a more variable power consumption during the third
stage with warm-up rounds, creating higher consumption than the beginning and a similar
consumption to the base experiment (around 3400mW). It may be related to the inference
phase being faster through the optimised models. The cold start issues are mitigated
earlier than in the base experiment. The addition of TensorRT has an observable effect on
the power profile when running MobileNET. It prevails mainly during inference running
stages. The warm-up phase is the only one where the average consumption increased from
the base version to the TRT-FP32. In the actual rounds (FPS analysis) step, the power
consumption results are compressed in a shorter time, supporting the improved image
throughput obtained from the optimised models. At this stage, the energy consumption is
slightly lower than in the base model. The average energy consumption is 5600mW in
this step.

67

4.3.3 MobileNet TRT-FP16

The results of TensorFlow floating-point 16 bits (TRT-FP16) show a profile similar to
that of the TRT-FP32 experiment 22. However, the power consumption remains relatively
low during the first stage, when the TensorRT library is loaded (around 2700mW). The
second stage does not present any significant change, primarily because of the stage’s re-
duced time (around 2600mW). The third stage follows a similar pattern to the previous
experiment, exhibiting a consumption plateau mainly after the cold start issues are resol-
ved (around 3450mW). Finally, the last stage shows a high plateau for consumption due
to the increased use of GPU resources during inference (around 3450mW).

Figure 22: Power consumption: Jetson Nano System running the MobileNetV2 with
TensorRT FP16. The y axis is the instantaneous power (in milli Watts); x axis is the
time (in samples).

4.3.4 NASNetMobile Base Model

This experiment employs the base model NASNetMobile. Figure 23 presents the
power consumption in sections that are the same as all previous models. This model
follows the standard of the base MobileNET.

Figure 23: Power consumption: NASNetMobile on the Jetson Nano platform. The y axis
is the instantaneous power (in milli Watts); x axis is the time (in samples)).

68

The first stage uses an extensive part of the experiment, and no observable spikes exist.
Neither expressive fluctuations with a mean power consumption of 3000mW . Slightly
above the NASNetMobile mean power consumption in this step. The second stage re-
mains small for this model and again shows no considerable spikes and fluctuations; its
mean energy consumption is around 3050mW . In the warm-up rounds stage, the NAS-
NetMobile model demonstrates and reinforces the effect of cold inference on power con-
sumption results. At the beginning of the process, the device maintains low consumption,
around 3400mW , at the same level as the base version of the previous model. However,
consumption increases even within this stage, strengthening the hypothesis about the im-
pact of cold inference. In the end, there is the consumption of the inferences. The increase
of the previous step remains as a plateau of high consumption (around 6300mW), slightly
higher than the base model of MobileNET.

4.3.5 NASNetMobile TRT-FP32

Figure 24: Power consumption: Jetson Nano System running the NASNetMobile with
TensorRT FP32. The y axis is the instantaneous power (in milli Watts); x axis is the time
(in samples).

This experiment (Fig 24) represents NASNetMobile optimised with TensorRT in the
TRT-FP32 option. The graph demonstrates that the TensorRT optimisation engine has
a similar effect on the models where it is applied. The energy profile has an expected
consumption pattern. In the first step, a long period is used to load packages and libra-
ries, with a constant and stable consumption of around 2900mW . Then the second step
remains within the pattern already observed, with an average consumption of 2700mW .
Then the model remains within the observed pattern, a more chaotic consumption than
the base model (around 3800mW). But it is compared to the previous model’s TRT-FP32
version, highlighting how TensorRT affects models similarly. At the end of the inference
step, consumption develops the high consumption plateau pattern expressed in a short
time, again supporting the high frame rate results of the optimised models. The average
value of consumption in this stage was 6400mW .

69

4.3.6 NASNetMobile TRT-FP16

Fig 25 shows the energy profile result of NASNetMobile optimised with the TRT-
FP16 option. This model again holds the expected pattern. The first step is the most
extensive, steady with no spikes and an average of 2900mW , entirely within expectations
given the other reported models. Then the second step is again tiny compared to the first,
with low and constant consumption, with an average of 2700mW . In the warm-up phase,
the model again presents consumption with more pronounced fluctuations compared to
the base model. Comparable to other optimised models. The average consumption in this
stage is around 4000mW . Finally, in the inference stage, the high consumption plateau
pattern appears again, resulting in an average consumption of 6400mW .

Figure 25: Power consumption: Jetson Nano System running the NASNetMobile with
TensorRT FP16. The y axis is the instantaneous power (in milli Watts); x axis is the time
(in samples).

4.3.7 VGG Base Model

This experiment explores the VGG base model (Fig 26), and it profiles the power con-
sumption profile. In this model, the first step comprises the loading of packages which
is extremely fast compared to the previous models. In terms of consumption, the stage
has an average of well above the other models and variations, sitting around 3600mW .
As in previous models, the second stage is small compared to the first one. The average
consumption is 2900mW , a figure in the same range as the earlier models. In the warm-
up rounds stage, the graph shows promising results. As soon as the script enters this
step, consumption becomes more volatile, showing more significant fluctuations, with an
average of 6200mW . Approximately halfway through this step, the consumption profile
changes abruptly, forming the beginning of the high consumption plateau that remains
in the next step. In the last step, the model presents an interesting pattern. The VGG
inference process is hugely costly in energy, maintaining an average of 7500mW and
showing an upward pattern throughout this step. Interestingly, the inference process ex-
pressively expands in this model, which is the experiment’s most significant piece. The

70

observed expansion reinforces the image throughput results, where VGG performs far
below MobileNET and NASNetMobile.

Figure 26: Power consumption: Jetson NANO System running the VGG. The y axis is
the instantaneous power (in milliWatts); x axis is the time (in samples).

4.3.8 Inception Base Model

The final model successfully tested on the device is the base version of Inception. This
model returns to the pattern observed throughout this section, except for the VGG. The
first step is extensive, with an average of 3000mW , slightly above most of the studied
models. Unlike the others, this model has a more significant fluctuation in consumption
at this stage. The second stage remains small compared to the first, with an average of
around 3050mW . Then the third presents more significant fluctuations than the previous
ones, which is expected as this pattern was already observed previously. The average at
this stage is 3750mW . In the end, the model presents the plateau pattern of energy cost
in the final stage of inference. The model reaches an average of around 6700mW . It is
important to note that the energy profile varies more smoothly at this stage than in any
other model (Fig 27).

Figure 27: Power consumption: Jetson NANO System running the Inception. The y axis
is the instantaneous power (in milliWatts); x axis is the time (in samples).

71

We report the energy consumption results of the studied models. The models were
systematically tested, and the results are organised to highlight how TensorRT’s optimi-
sation affects each step of the script that runs the experiments. Table 4.3.8 presents the
grouped data of average consumption of each script stage for each model studied in this
session.

Notably, specific models are much more expensive in terms of power. The last co-
lumn of the table presents promising data for our analysis. It contains the average power
consumption values for each model’s experiment—first, the MobibleNET model and its
variations. The base version already has the lowest average value among all the models
in their base versions. Comparing it with TensorRT-optimised versions, one can observe
an improvement in average consumption. MobileNET versions TRT-FP32 and TRT-FP16
show a decrease in average consumption compared to the base version. Except for the
third stage, the warm-up, the optimised versions consume more than the base version.
Comparing the two optimised versions, it is noticeable that they present similar results
in all steps. However, the TRT-FP16 version obtained consumption results slightly above
the others in three phases, resulting in higher average consumption.

Table 5: Average power consumption in each step across all experiments. The columns
report on each algorithm step of the model version as follows: (1) Loading Model, (2)
Extracting Infer Engine & Returning Batch, (3) Warm Up Rounds and(4) Real Rounds.
The last column is the average power consumption in the experiment as a whole.

1 2 3 4 Avg Pw
MobileNET Base 2900 2800 3100 6100 3386
MobileNET TRT-FP32 2600 2600 3400 5600 3185
MobileNET TRT-FP16 2700 2600 3450 5800 3229
NASNetMobile Base 3000 3050 3400 6300 4236
NASNetMobile TRT-FP32 2900 2700 3800 6400 3624
NASNetMobile TRT-FP16 2900 2700 4000 6400 3641
VGG Base 3600 2900 6200 7500 7216
Inception Base 3000 3050 3750 6700 4633

NASNet Mobile, in its base version, has similar results to the previous model. But
with a difference in consumption that cannot be overlooked. In this sense, it is visible that
this model has a higher energy cost than the previous one. There was greater consumption
in each stage of the script, with variation in the difference resulting in a higher average
consumption than expected. TensorRT’s effect on NASNetMobile power consumption re-
sults is similar to the previous model. However, specific differences must be highlighted
in the first two steps where the effect is the same: a similar drop in consumption at an
equal rate. The difference appears in the later steps, while the first model slightly incre-
ased in the third step. NASNetMobile shows a more expressive increase, mainly in the
TRT-FP16 version. In the final stage, there is an increase in power consumption, even if
it is small. The table indicates that VGG is a highly costly model compared to the others.

72

The model has the highest average consumption in three of the four stages of the script.
Additionally, this consumption is higher than the other ones by a considerable margin. In
the warm-up stage, it is possible to see that the increase is extreme, being almost twice
as high in average consumption compared to other models. This increase is maintained
in the inference stage. VGG has the highest average consumption in the inference, far
above the others and with a clear upward trend. This is worrying because this average
may be even higher with more images to be classified. Inception’s last model presents re-
sults within the pattern observed among the other models. In the first and second stages,
consumption is at the top of the scale, excluding VGG, whose numbers are very different
from the others. The same goes for the average consumption of the last step. The ave-
rage power consumption results, aligned with the graphical analysis of the consumption
profile, exposed the energy characteristics of each model. These results point to a series
of interesting findings. First, optimisation by TensorRT has a similar effect on the models
where it is applied. The scale of change can vary, but in the studied models, it is clear
that TensorRT generates a decrease in energy consumption, whether in the TRT-FP32 or
TRT-FP16 versions. And when compared, the optimisation options indicate that the dif-
ference between them is negligible for this metric. Second, MobileNET turned out to
be the cheapest model in terms of energy. The base model does not present the highest
average value in any step, and its average consumption in the experiment is among the
lowest, surpassing even optimised versions of NASNetMobile. The optimised versions
outperform the base model by a small but considerable margin. The average consump-
tion of the MobileNET version TRT-FP32 was the best in the experiments, followed by
the TRT-FP16 version of the same model. This outcome consolidates MobileNET as the
best model in terms of energy consumption. The VGG is the worst among all in terms of
power consumption which gives some preliminary indication that the VGG model is not
a fit for embedded and off-grid applications.

4.4 Memory Consumption

This section reports on the memory usage during the experiments, running models
on the Jetson Nano device. The logger (running in parallel) aggregated the RAM usage
to make the comparisons between the models (MobileNET, NASNetMobile, VGG and
Inception) and their versions (Base, TRT-FP32 and TRT-FP16). Memory consumption
is one of the most critical metrics for defining the feasibility of the models studied for
edge deployment. Because the memory available on the device is a formidable barrier
and possible bottleneck, as each model may require different levels of memory.

73

4.4.1 MobileNET

Fig 29 illustrates the memory consumption profile of the NASNetMobile and its op-
timised variations. The graphs of the three variations repeat the pattern found in the
previous model versions, constantly growing to the peak in the warm-up stage. The same
steep notch found in early models is seen in the NASNetMobile profile. After that, the
model has the same steady growth seen previously until the peak in the inference stage. It
is interesting to see how the addition of TensorRT in the two cases already presented does
not generate any additional artefacts in the consumption graph line. A sharp second step
was expected from the TensorRT loading.

Figure 28: Memory consumption: MobileNetV2 and variations on the Jetson NANO
platform. First, at the top is the base version, followed by TRT-FP32 and TRT-FP16. The
y axis of each graph is memory usage (in MegaBytes); x axis is the time (in samples)).

4.4.2 NASNetMobile

We report on the memory consumption of the NASNetMobile and its optimised va-
riations. The memory consumption profile can be seen in Fig 29. The curves of the
three variations repeat the pattern found in the versions of the previous model, constantly
growing to the peak in the warm-up stage. The same steep notch found in early models
is seen in the NASNetMobile profile. Afterwards, the model has the same steady growth
seen previously until the peak in the inference stage. It is interesting to see how the ad-
dition of TensorRT in the two cases already presented does not generate any additional
artefacts in the consumption curve. A sharp second step was expected from the TensorRT

74

loading.

Figure 29: Memory consumption: NASNetMobile and variations on the Jetson NANO
platform. First, at the top is the base version, followed by TRT-FP32 and TRT-FP16
versions. The y axis of each graph is memory usage (in MegaBytes); x axis is the time (in
samples)).

4.4.3 VGG

Figure 30 presents the energy profile result of the experiment running VGG on the
device. This pattern is reasonably different from the ones seen earlier. At the end of the
second stage, this model consumed memory at a level similar to the previous ones. Howe-
ver, the consumption growth was much sharper, something expected since the energy pro-
file already indicated that loading the model is much faster for the VGG case. Again, the
memory consumption peak occurs in the warm-up stage. In the inference phase, con-
sumption stabilises until the end of the experiment.

4.4.4 Inception

We finally report on the memory consumption profile of the last model (Inception).
The profiling curve can be seen in Fig 31, and the MobileNET and NASNetMobile default
reappear, the same as in the power profile analysis. Following this pattern, the profile
presents the accentuated step of loading the model in the first stage. Afterwards, it grows
steadily to a peak in the warm-up phase.

There is a slight variation in the memory consumption profile for the studied models.

75

Figure 30: Memory consumption: VGG on the Jetson NANO platform. The y axis is
memory used (in MegaBytes); x axis is the time (in samples)).

Figure 31: Memory consumption: Inception on the Jetson NANO platform. The y axis is
memory spend (in MegaBytes); x axis is the time (in samples)).

Only VGG stands out with the sharp increase in the beginning. The results obtained in
such profiles reinforce evidence found in the energy profiles. However, to better analyse
the consumption of the models, we report the peak memory consumption of each model
studied (Table. 6).

Table 6: Results of peak Memory usage across all models.
Peak Memory Usage

MobileNET Base 93.10
MobileNET TRT-FP32 99.61
MobileNET TRT-FP16 99.99
NASNetMobile Base 95.25
NASNetMobile TRT-FP32 99.95
NASNetMobile TRT-FP16 99.28
VGG Base 88.53
Inception Base 97.27

Exposing and analysing peak consumption helps to understand the model’s feasibility
and how close the model is to the available ceiling. Initially, it is already possible, as
observing the table, that all models approach the available memory limit. However, this
leaves little space for other applications to execute.

Starting with the base versions of each model, MobileNET reaches a peak memory
usage of 93.10%. NASNetMobile consumed slightly higher at (95.25%), reaching a point
close to the available memory ceiling. The VGG differs again from the other models
with the lowest memory usage among the studied models by reaching 88.53%. Such

76

results suggest that VGG, even if it is the slowest, is a good candidate where memory
consumption is the primary concern in the target system. In contrast, the Inception has
the highest consumption among the base models. It consumed 97.27% of the device
memory, the closest to the total memory available. Therefore, inception should be used
only if the target system has sufficient extra memory.

The optimised versions of the models reached the ceiling of available memory on
the device. The four models (MobileNET and NASNet in both optimisation options)
consumed over 99% of system memory. It remained at this consumption level until the
end of the inference stage. Such an increase is expected because TensorRT needs its entire
software package to be loaded into memory. A feature likely to have been inherited from
the NVIDIA desktop hardware environment was later adapted for edge devices. This
effect of the optimisation engine is worrying, as the extremely constant memory usage
can affect the rest of the system’s performance and energy footprint. Nevertheless, the
optimisation engine approach (as used by TensorRG) is the facto industry standard for
edge computing applications.

Memory consumption has been the major identified barrier that prevented the VGG
and Inception model optimised versions from executing the validation on the device plat-
form successfully. In both cases, we repeated the experiment many times but could not
execute such optimised models on the Jetson NANO. In all attempts to run the experiment
with the TRT-FP32 and TRT-FP16 model versions, the system did not have sufficient me-
mory to instantiate the tensor objects required for the inferences. This was a showstopper
for analysing these two versions under the other metrics studied. Also, this suggests that
users have to consider memory stress as a priority in their edge application deployments.

4.5 CPU and GPU usage

Evaluating computational resources (CPU-GPU usage) is vital to understanding mo-
del stress on the chosen deployment hardware. Table 7 reports the results of computatio-
nal resource usage. Most models do not put significant pressure on processing cores (e.g.
MobileNET and its variations). However, it can be observed that the optimised versions
slightly decrease GPU usage but exercise a more significant load on the four CPU cores.
This is because TensorRT optimisations allow some model operations to be offset to the
CPU.

The workload that NASNetMobile imposes on the processing cores remains small.
However, such a load is larger than the previous model by a small margin. Again, it is
possible to extrapolate from the table that the optimised versions offset the computational
burden from the GPU by transferring it to the CPU cores. Such GPU-CPU offset is more
evident in this case, and the GPU usage drop is more noticeable. In contrast, the VGG
again differs from the other models. The CPU cores usage is visibly lower and the lowest

77

Table 7: Average CPU and GPU usage. Columns are CPU cores and device GPU.
CPU 1 CPU 2 CPU 3 CPU 4 GPU

MobileNET Base 24 20 32 21.5 25
MobileNET TRT-FP32 27 34 28 35 24
MobileNET TRT-FP16 34 28 36 31.5 24
NASNetMobile Base 27.5 28.7 36.6 23.5 37
NASNetMobile TRT-FP32 32.2 33 30 28.5 23
NASNetMobile TRT-FP16 30 30 34 30.5 28
VGG Base 20.5 19.9 18.5 18.4 91
Inception Base 30 22 27 22 42

for any model. However, this model consumes significant GPU resources. The high
VGG-associated overheads have also been observed for the power consumption footprint.

Finally, Inception’s last model presents a CPU usage close to that of the other models.
However, the model utilises the specialised image processor (GPU resource) at a higher
rate than MobileNET and NASNetMobile.

The models have not imposed too much pressure on the Jetson NANO system because
the embedded device processors could execute the system processes that carry out the
experiments. However, an interesting observation is that the VGG model is costly in
terms of computational resource usage.

4.6 Performance and Costs Analyses

It is essential to establish which models are superior in terms of performance, guiding
the choice of model for the application. But in the resource-scarce world of edge compu-
ting, it is even more critical to establish the costs and taxes related to such performance.
A model whose performance is far superior to all others is not so useful if unable to exe-
cute correctly on the chosen platform. And especially in off-grid embedded systems, as
the one envisaged in the use case scenario, ensuring that every watt unitis well used with
minimal overhead becomes an important system design choice. It becomes clear that it is
necessary to contrast performance results with resource usage data. We use the image th-
roughput metric as the main performance indicator to achieve this. The ability to classify
the most significant possible number of images in a time window is central to the appli-
cations. We analyse the cost of such performance through average power consumption
values over each experiment. This is an indication of the power cost for the gains in the
frame rate performance.

4.6.1 MobileNetV2

We initially reported the results on the performance/cost for the MobileNET model
and its variants (Table 8). To this end, we organise the results as follows: (a) Total Avg
Power is the average power consumption across the entire experiment, (b) Inference Avg

78

Power is the average power in the inference step only, (c) The Total Performance-Watt (in
FPS/W) represents the energy cost of the achieved performance for the entire experiment,
(d) and the Inference Performance-watt (FPS/W), the performance-watt value covering
only the power consumption for the inference.

Table 8: Power Consuption Results of the MobileNetV2 model and variations.
Base Model TRT-FP32 TRT-FP16

Total Avg Power (mW) 3386 3185 3229
Inference Avg Power (mW) 6125 5711 5860

Total Performance-watt (FPS/W) 12.10 25.74 26.01
Inference Performance-watt (FPS/W) 6.69 14.35 14.33

The base version’s average power consumption is 3386mW and 6125mW for the en-
tire experiment and inference phase, respectively. Such a promising result led to an accep-
table performance-watt of 12.10FPS/W across the entire experiment and 6.69Fps/W

in the inference phase. The results demonstrate the device’s capabilities for AI edge com-
puting. The TRT-FP32 version reached 3185mW across the experiment and 5711mW

in the inference step, and the optimised model outperforms the base one by a small mar-
gin. The enhanced performance-watt (FPS/W) has a superior outcome compared to the
base model. The TRT-FP32 experiment achieved 25.74FPS/W and 14.35FPS/W in
the inference step. The optimised model at least doubled the final performance-watt com-
pared to the base model. This result is highly favourable and is derived from the joint
result between the slight gain observed in the energy profile and the optimisation engine
doubling the model’s frame rate.

The TRT-FP16 model outperformed the base model by only a small margin under
the power consumption analysis. It reaches an average consumption of 3229mW and
5860mW during the inference stage. This model’s performance surpassed the base model.
However, it lagged behind the TRT-FP32 model in the final metric. The performance-
watt reached 26.01FPS/w for the entire experiment and 14.33FPS/w in the inference
step, a negligible difference between the optimised model experiments. Such results may
indicate an improved performance for each watt spent for MobileNET-optimised models.

4.6.2 NASNetMobile

In the NASNetMobile base model, average power consumptions were 4236mW and
6282mW , respectively, for the entire experiment and inference step. The model achieved
9.44FPS/w (entire experiment) and 6.36FPS/w (inference only). The NASNetMobile
is slightly less efficient than the other models when considering the performance-watt
metric. However, the results of this model were still within acceptable limits, considering
the return per watt.

The TRT-FP32 version reached 3624mW across the experiment and 6470mW in the

79

Table 9: Power Consumption forthe NASNetMobile model and variants.
Base Model TRT-FP32 TRT-FP16

Total Avg Power (mW) 4236 3624 3641
Inference Avg Power (mW) 6282 6470 6409

Total Performance-watt (FPS/W) 9.44 22.90 23.89
Inference Performance-watt (FPS/W) 6.36 12.82 13.57

inference step. The analysis of power consumption is tricky for this model. The optimised
model outperformed the base model in the Total Avg Power by a safe margin. However,
it falls short if we consider only the inference step. In this metric, the TRT-FP32 was in-
ferior to the base model. The joint analysis performance-watt is key to understanding the
behaviour of this model. For instance, it reached 22.90FPS/w (entire experiment) and
12.82FPS/w (inference step); thus, the performance-watt result in the whole experiment
doubled, resulting in high gains in frame rate. Therefore, despite the inferior outcome
in Inference Avg Power, the TRT-FP32 version outperformed the base model in the final
metric due to the already mentioned gains in frame rate. The TRT-FP16 version outper-
forms the base model in the first power-only metric (3641FPS/w). However, it falls
short of the other optimised version by a tiny margin. Inference Avg Power surpasses the
previously optimised model but does not beat the base model (6409FPS/w). Finally, as
the performance-watt metric, it exceeds both other versions of the NASNetMobile in the
two metrics by reaching 23.89FPS/w across the whole experiment and 13.57FPS/w

during the inference step. The NASNetMobile results reinforce the evidence that using
TensorRT allows developers to use less energy to power up more efficient models.

4.6.3 VGG and Inception

The first model obtained an average consumption of 7216mW throughout the expe-
riment and 7500mW considering only the inference. Regarding the performance-watt
metrics, the VGG results are well below the others, reflecting the low FPS that the model
achieved. It reaches 2.35FPS/w in the whole experiment and 2.26FPS/w considering
only the last step. Such results reinforce the VGG as a model with high overhead. It
requires much power to deliver questionable performance, easily surpassed by the other
validated models.

Table 10: Power Consumption: VGG and Inception.
VGG Inception

Total Avg Power (mW) 7216 4633
Inference Avg Power (mW) 7500 6700

Total Performance-watt (FPS/W) 2.35 1.07
Inference Performance-watt (FPS/W) 2.26 0.74

The latter model has better results on the power-only metrics by reaching only

80

4633mW and 6700mW , the entire experiment and inference step, respectively. However,
it demonstrates the worst results in performance-watt metrics among all models. Incep-
tion reaches only 1.07FPS/w considering the experiment from beginning to end, already
a result far below the required for applications. And for the final metric, its results sit at
0.74FPS/w, less than a unit, which indicates that the Inception, even not having a high
energy overhead, does not deliver good performance results for each watt used. This re-
sult may be explained by the model not so good performance (extremely slow in FPS), as
reported in the image throughput analysis.

It is important to emphasise that the deployment of the models at the edge kept accu-
racy at similar levels to their counterparts in the cloud. Furthermore, after optimisation,
such accuracy levels have not changed.

TensorRT’s ability to double the frame rate in the models where it is applied is re-
markable. In their optimised versions, the two successfully tested models presented much
higher throughput than the base versions. The data collected from the experiments and
graphical analysis suggest that TensorRT can make models more energy efficient using
the transformations, thus reducing the energy overhead of the model. This overall drop
in power consumption could be related to the optimisation engine’s effect on the device’s
CPU and GPU usage. GPUs well know for being power-hungry devices, so shifting some
of the workloads away from the GPU is always an energy-saving opportunity.

Memory consumption is the main adverse effect observed in the TensorRT system.
Optimised model versions required more memory to execute. The shortcoming is that the
TensorRT involves a load of its entire stack into the system memory to run the inferences,
a significant limitation for the applications developed for edge deployment. The results
of the performance-watt analysis gave a better behaviour view for the models running on
the edge device. Such results generally reinforce that TensorRT optimisation positively
affects the deployed models. Furthermore, the two models successfully tested in their
optimised forms exhibited real gains in terms of classified images and the energy used by
the system. Such a gain in performance-watt impacts the system positively so that more
performance can be achieved for every watt spent running the classification process.

MobileNET has been the model that showed the best results in most selected me-
trics, especially the TRT-FP16 version, which achieved a performance-watt ratio of
26.01FPS/w. This model version also scored well in terms of CPU and GPU usage.
However, the model suffers from the memory ceiling problem. In terms of accuracy,
the model achieved reasonably good levels. Applications have diverse requirements that
need to be considered individually for bringing cloud models to edge devices. But con-
sidering the context established in the experimental work, under the specific conditions
set, the MobileNET TRT-FP16 has emerged as a good candidate for edge deployment for
the case study application: phytoplankton image classification as part of the ASTRAL
project.

81

4.7 Key Findings

The experimental regime and the studied models generated interesting results. Below
we summarise the key findings of this work:

• Transitioning the ML to a mid-range edge device such as Jetson NANO has a mi-
nimal impact on the model quality as measured by the traditional accuracy metric.
This is reassuring because quality loss is always a critical risk in edge computing.

• TensorRT through the model compression optimisations can lead to substantial
image throughput improvements. For example, we observed the FPS doubling for
some models evaluated.

• TensorRT decreases the model’s overall power consumption by moving part of the
GPU workload to the CPU cores. The magnitude of this decrease varies from model
to model, but it can be easily observed from the experimental data.

• When transitioning ML models to the edge, memory consumption is a significant
system limitation. TensorRT performance is disappointing in this area. This is a
conflicting situation as one should expect the opposite as quantisation in the op-
timisation pipeline tens to decrease memory usage (data compression). However,
the TensorRT system needs to load extra software libraries, diminishing the actual
gains delivered by model compression techniques. This is a significant concern that
deserves further investigation, and initial work at Harvard University has already
shed some light in quantifying all the extra overheads often invisible as part of AI

taxes accounting [6].

5 CONCLUSION AND FUTURE WORK

This work explored the transition challenge whereby the cloud-based ML model is
transferred to an embedded system device (edge). The work attempted to expose and un-
derstand the performance and resource usage limitations (mainly image throughput and
power consumption) when deploying the models in a resource-constrained edge environ-
ment. In this way, our main interests in the research presented are the answers to the
following questions:

• (RQ1) What is the performance and accuracy impact of taking cloud-based models
to resource-constrained devices at the network edge?

• (RQ2) What is the power footprint in running machine learning classifiers in edge
microscopic image analyser devices? And what is the impact that TensorRT has on
the deployed models in terms of performance-watt?

To develop the work, we followed an evaluation methodology centred on several sys-
tem stress experiments to gather information for key evaluation metrics. The work used
the TensorRT tool as an optimisation engine for the underlying embedded hardware and
analysed possible overheads and bottlenecks in the underlying system.

The experimental work evaluated possible trade-offs between model performance, ac-
curacy, and resource usage. The analysis of the results has not established a clear-cut
relationship between frame rate performance (image throughput) and high power con-
sumption. The fastest high-performant models are not the most power-hungry. Further-
more, the deployment of the models at the edge did not affect their accuracy (related to
RQ1).

TensorRT engine optimised a MobileNet model trained in the cloud (base model),
resulting in a fine-tuned model for an embedded edge system (NVIDIA Jetson Nano).
Optimised model versions were evaluated using float-point quantisation of 16 and 32 bits.
Evaluation results of the power-consumption profile, resource usage, classification per-
formance and image throughput suggest that TensorRT is an efficient option for machine
learning edge computing (related to RQ2). TensorRT boosted the performance-watt of
both models successfully tested. In addition, the optimisation engine doubled the image

83

throughput while enhancing its energy efficiency, improving the overall performance-watt
trade-off. Results indicate that the library also transfers a portion of the GPU workload to
the CPU thanks to the transformations made to the model’s graph. However, application
developers following these guidelines should take caution as the observed high memory
usage presents a system limitation that must be carefully considered. The overheads out-
side the main inference pipeline must be taken into account. This is a strong message.

The objectives of the present work derive directly from the research questions we set
to address. The work objectives were enumerated in the introductory chapter and will
now be revisited to close the validation loop.

• S01 - To investigate the accuracy of cloud-based models once deployed into
edge devices [RQ1].
This work reports accuracy for all selected models in the cloud and edge devices. It
also reports the accuracy results of the optimised models running in the target edge
device, the Jetson NANO. For instance, the MobileNetV2 ACC results drop 0.01%
as the model is embedded. Also, we observe no change with the optimised versions,
which might indicate no over-fitting. The same decrease has been observed with
the NASNetMobile. However, in this case, we observe another small drop with the
optimised versions, in both cases 0.03%.

• S02 - To investigate possible performance gain (in image FPS) in model post-
optimisation [RQ1].
We report the results regarding image throughput for each model and variation. The
selected models vary significantly in this metric. Nevertheless, the experiments
confirm the supposed gains that TensorRT promises. A significant increase was
observed in all cases where we could run the optimised models, mostly around
doubling the base model result. MobileNetV2 and NASNetMobile double their
image throughput, and the gains of the later model are slightly higher, jumping from
40 to 83 FPS. It is important to highlight the slight difference between optimisation
options. The TRT-FP16 option reaches an increased FPS for both models. This
quantisation achieved the best results for the NASNetMobile, 87 FPS.

• S03 - To conduct a deep analysis of system power consumption [RQ2]
The present Master’s dissertation carried out extensive analytical work on the power
consumption results. We split the experiments into sections and delve into each sec-
tion’s energy profile. All models and variants’ results were analysed. This way, we
could compare the base models and between each model’s base version and its op-
timised versions. First, we observe a substantial decrease in power consumption
for all optimised versions compared to the base models. The more significant diffe-
rence we observe is in the NASNetMobile model, going from 4236mW to around
3600mW in both optimised versions.

84

• S04 - To analyse the resources used [RQ2].
This work explored the use of computational resources by running ML models. Re-
sults were reported from monitoring software for memory consumption and CPU
and GPU usage. Such results were essential in determining which model and va-
riants could be feasible for deployment in the target device. Unfortunately, not
all models could be adequately assessed. For example, the optimised versions of
VGG and Inception exhibited excessive memory-hungry behaviour to the point of
crashing the system on every attempt.

• S05 - To understand the performance-watt [RQ2].
The present work uses image throughput and power consumption results to cre-
ate a complete cross-metric analysis. This performance-watt approach enables a
comprehensive full picture of the model’s overheads. And by this measure, we
can understand how much it costs for each model to reach its performance. Data
from this cross-analysis indicate MobileNetV2 in the TRT-FP16 version as the best
performance-watt, with 26.01 FPS/W for the whole experiment and 14.33FPS/W
considering only the inference time.

The present work contributed to the profiling and understanding of issues and limita-
tions associated with taking ML-based phytoplankton classification models to a represen-
tative edge device system.

The main contribution of this work is the analysis of the performance and energy
footprint (and their collective impact) on the overall edge system. The performance-watt
study is revealing because it shows that the trend in system evaluation is better off using a
two-dimensional metric rather than exploring those individually. Edge computing devices
need to be low-cost and low-power but still deliver some performance to the application.
The optimisation across such metrics is non-trivial and will inevitably lead to system
trade-offs. Nevertheless, measuring and visualising energy usage and performance is a
good practice for future developers.

This work left some questions to be explored in the future. First, it is important to
investigate the mechanics of cold inference on edge devices more closely. The available
literature led us to include a standardised warm-up step in our experiments. And the
experimental stage showed the advantages of considering this phenomenon and counting
on its existence. However, the experiments also demonstrated that each model experiences
cold inference differently. So studying this phenomenon in depth in edge models and
understanding the best warm-up range can lead to valuable findings.

Another critical point that can be explored in future works is to expand the range of
models. Our methodology proved very useful for studying models deployed on the edge,
generating valuable results for developing systems. This way, including more models
than those used in our application, can create a useful dataset for edge system designers.

85

Finally, the most natural next step for the present work is to continue the development
process of the embedded system as a whole. The studied models demonstrated their
capabilities for the embedded application of phytoplankton classification. This beneficial
result will be capitalised on in the upcoming research activities in the ASTRAL project.

86

REFERENCES

[1] Ahmed, E., Yaqoob, I., Hashem, I. A. T., Khan, I., Ahmed, A. I. A., Imran, M., and
Vasilakos, A. V. (2017). The role of big data analytics in internet of things. Computer

Networks, 129:459–471.

[2] Anderson, D. M., Andersen, P., Bricelj, V. M., Cullen, J. J., and Rensel, J. J. (2001).
Monitoring and management strategies for harmful algal blooms in coastal waters.
Unesco.

[3] Bianco, S., Cadene, R., Celona, L., and Napoletano, P. (2018). Benchmark analysis
of representative deep neural network architectures. IEEE access, 6:64270–64277.

[4] Braque, M., De Nul, L., and Petridis, A. (2021). Industry 5.0 : towards a sustainable,

human-centric and resilient European industry. European Commission, Directorate-
General for Research and Innovation, Publications Office, Brussels.

[5] Brosnahan, M. L., Velo-Suárez, L., Ralston, D. K., Fox, S. E., Sehein, T. R., Sha-
lapyonok, A., Sosik, H. M., Olson, R. J., and Anderson, D. M. (2015). Rapid growth
and concerted sexual transitions by a bloom of the harmful dinoflagellate alexandrium
fundyense (dinophyceae). Limnology and Oceanography, 60(6):2059–2078.

[6] Buch, M., Azad, Z., Joshi, A., and Reddi, V. J. (2021). Ai tax in mobile socs: End-to-
end performance analysis of machine learning in smartphones. In 2021 IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software (ISPASS), pages
96–106. IEEE.

[7] Buskey, E. J. and Hyatt, C. J. (2006). Use of the flowcam for semi-automated recog-
nition and enumeration of red tide cells (karenia brevis) in natural plankton samples.
Harmful Algae, 5(6):685–692.

[8] Campbell, L., Henrichs, D. W., Olson, R. J., and Sosik, H. M. (2013). Continu-
ous automated imaging-in-flow cytometry for detection and early warning of karenia
brevis blooms in the gulf of mexico. Environmental Science and Pollution Research,
20(10):6896–6902.

87

[9] Campbell, L., Olson, R. J., Sosik, H. M., Abraham, A., Henrichs, D. W., Hyatt, C. J.,
and Buskey, E. J. (2010). First harmful dinophysis (dinophyceae, dinophysiales) bloom
in the us is revealed by automated imaging flow cytometry 1. Journal of Phycology,
46(1):66–75.

[10] Cao, K., Liu, Y., Meng, G., and Sun, Q. (2020). An overview on edge computing
research. IEEE access, 8:85714–85728.

[11] Chen, Y., Wen, X., Zhang, Y., and He, Q. (2022). Fpc: Filter pruning via the con-
tribution of output feature map for deep convolutional neural networks acceleration.
Knowledge-Based Systems, 238:107876.

[12] Cho, D., Tai, Y.-W., and Kweon, I. S. (2018). Deep convolutional neural network
for natural image matting using initial alpha mattes. IEEE Transactions on Image

Processing, 28(3):1054–1067.

[13] Dapena, C., Bravo, I., Cuadrado, A., and Figueroa, R. I. (2015). Nuclear and cell
morphological changes during the cell cycle and growth of the toxic dinoflagellate
alexandrium minutum. Protist, 166(1):146–160.

[14] Deng, L., Yu, D., et al. (2014). Deep learning: methods and applications. Foundati-

ons and trends® in signal processing, 7(3–4):197–387.

[15] DeSA, U. (2015). World population prospects: The 2015 revision, key findings and

advance tables. United Nations.

[16] Diez-Olivan, A., Del Ser, J., Galar, D., and Sierra, B. (2019). Data fusion and
machine learning for industrial prognosis: Trends and perspectives towards industry
4.0. Information Fusion, 50:92–111.

[17] Ferdowsi, A., Challita, U., and Saad, W. (2019). Deep learning for reliable mobile
edge analytics in intelligent transportation systems: An overview. IEEE Vehicular

Technology Magazine, 14(1):62–70.

[18] (Food, F. and Organization), A. (1997). Bangkok fao technical consultation on poli-
cies for sustainable shrimp culture.

[19] Ge, W., Sun, J., Xu, Y., and Zheng, H. (2021). Real-time object detection algorithm
for underwater robots. In 2021 China Automation Congress (CAC), pages 7703–7707.
IEEE.

[20] Grosan, C. and Abraham, A. (2011). Machine Learning, pages 261–268. Springer
Berlin Heidelberg, Berlin, Heidelberg.

88

[21] Guterres, B., Khalid, S., Pias, M., and Botelho, S. (2022). A data integration pipe-
line towards reliable monitoring of phytoplankton and early detection of harmful algal
blooms. In NeurIPS 2021 Workshop Tackling Climate Change with Machine Learning,
volume 2021. NeurIPS.

[22] Hallegraeff, G. M., Anderson, D. M., Cembella, A. D., and Enevoldsen, H. (2004).
Manual on harmful marine microalgae. Unesco.

[23] Han, S., Pool, J., Tran, J., and Dally, W. (2015). Learning both weights and connec-
tions for efficient neural network. Advances in neural information processing systems,
28.

[24] Harred, L. B. and Campbell, L. (2014). Predicting harmful algal blooms: a case
study with dinophysis ovum in the gulf of mexico. Journal of plankton research,
36(6):1434–1445.

[25] Henrichs, D. W., Sosik, H. M., Olson, R. J., and Campbell, L. (2011). Phylogenetic
analysis of brachidinium capitatum (dinophyceae) from the gulf of mexico indicates
membership in the kareniaceae 1. Journal of Phycology, 47(2):366–374.

[26] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.

[27] Huang, S., Ankit, A., Silveira, P., Antunes, R., Chalamalasetti, S. R., El Hajj, I.,
Kim, D. E., Aguiar, G., Bruel, P., Serebryakov, S., et al. (2021). Mixed precision
quantization for reram-based dnn inference accelerators. In 2021 26th Asia and South

Pacific Design Automation Conference (ASP-DAC), pages 372–377. IEEE.

[28] Joshi, P., Afli, H., Hasanuzzaman, M., Thapa, C., and Scully, T. (2022). Enabling
deep learning for all-in edge paradigm. arXiv preprint arXiv:2204.03326.

[29] Jošilo, S. and Dán, G. (2019). Selfish decentralized computation offloading for
mobile cloud computing in dense wireless networks. IEEE Transactions on Mobile

Computing, 18(1):207–220.

[30] Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I., and Ahmed, A. (2019). Edge
computing: A survey. Future Generation Computer Systems, 97:219–235.

[31] Khelifi, H., Luo, S., Nour, B., Sellami, A., Moungla, H., Ahmed, S. H., and Guizani,
M. (2019). Bringing deep learning at the edge of information-centric internet of things.
IEEE Communications Letters, 23(1):52–55.

89

[32] Lai, Q. T., Lee, K. C., Tang, A. H., Wong, K. K., So, H. K., and Tsia, K. K. (2016).
High-throughput time-stretch imaging flow cytometry for multi-class classification of
phytoplankton. Optics Express, 24(25):28170–28184.

[33] Larsen, K. R. and Becker, D. S. (2021). Automated machine learning for business.
Oxford University Press.

[34] Lee, M.-S., Park, K.-A., Chae, J., Park, J.-E., Lee, J.-S., and Lee, J.-H. (2020). Red
tide detection using deep learning and high-spatial resolution optical satellite imagery.
International Journal of Remote Sensing, 41(15):5838–5860.

[35] Lehman, P., Kendall, C., Guerin, M., Young, M., Silva, S., Boyer, G., and Teh,
S. J. (2015). Characterization of the microcystis bloom and its nitrogen supply in san
francisco estuary using stable isotopes. Estuaries and Coasts, 38(1):165–178.

[36] Lehman, P., Marr, K., Boyer, G., Acuna, S., and Teh, S. J. (2013). Long-term trends
and causal factors associated with microcystis abundance and toxicity in san francisco
estuary and implications for climate change impacts. Hydrobiologia, 718(1):141–158.

[37] Li, F.-F., Fergus, R., and Perona, P. (2006). One-shot learning of object categories.
IEEE transactions on pattern analysis and machine intelligence, 28(4):594–611.

[38] Li, Z., Gong, Y., Ma, X., Liu, S., Sun, M., Zhan, Z., Kong, Z., Yuan, G., and Wang,
Y. (2020). Ss-auto: A single-shot, automatic structured weight pruning framework of
dnns with ultra-high efficiency. arXiv preprint arXiv:2001.08839.

[39] Min, X., Li, W., Yang, J., Xie, W., and Zhao, D. (2022). Self-supervised graph neural
network with pre-training generative learning for recommendation systems. Scientific

Reports, 12.

[40] Moore, R. E. (2011). FlowCAM® Manual Version 3.0. Fluid Imaging Technologies,
Inc.

[41] Munoz, A. (2014). Machine learning and optimization. URL: https://www. cims.

nyu. edu/˜ munoz/files/ml optimization. pdf [accessed 2016-03-02][WebCite Cache ID

6fiLfZvnG].

[42] Namiot, D., Ilyushin, E., and Chizhov, I. (2021). Military applications of machine
learning. International Journal of Open Information Technologies, 10(1):69–76.

[43] Nilsson, N. J. and Nilsson, N. J. (1998). Artificial intelligence: a new synthesis.
Morgan Kaufmann.

90

[44] Olson, R., Vaulot, D., and Chisholm, S. (1985). Marine phytoplankton distributions
measured using shipboard flow cytometry. Deep Sea Research Part A. Oceanographic

Research Papers, 32(10):1273–1280.

[45] Olson, R. J. and Sosik, H. M. (2007). A submersible imaging-in-flow instrument
to analyze nano-and microplankton: Imaging flowcytobot. Limnology and Oceano-

graphy: Methods, 5(6):195–203.

[46] Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning.
In 2017 15th international conference on ICT and knowledge engineering (ICT&KE),
pages 1–6. IEEE.

[47] O’Shea, K. and Nash, R. (2015). An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458.

[48] Pollina, T., Larson, A. G., Lombard, F., Li, H., Colin, S., de Vargas, C., and Pra-
kash, M. (2020). Planktonscope: Affordable modular imaging platform for citizen
oceanography. bioRxiv.

[49] Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen,
S.-C., and Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques,
and applications. ACM Comput. Surv., 51(5).

[50] Rajaraman, V. (2014). Cloud computing. Resonance, 19(3):242–258.

[51] Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., and Pedarsani, R. (2020).
Fedpaq: A communication-efficient federated learning method with periodic averaging
and quantization. In International Conference on Artificial Intelligence and Statistics,
pages 2021–2031. PMLR.

[52] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobile-
netv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4510–4520.

[53] Satyanarayanan, M. (2017). The emergence of edge computing. Computer,
50(1):30–39.

[54] Seichter, D., Köhler, M., Lewandowski, B., Wengefeld, T., and Gross, H.-M. (2021).
Efficient rgb-d semantic segmentation for indoor scene analysis. In 2021 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 13525–13531. IEEE.

[55] Shadrin, D., Menshchikov, A., Somov, A., Bornemann, G., Hauslage, J., and Fe-
dorov, M. (2019). Enabling precision agriculture through embedded sensing with
artificial intelligence. IEEE Transactions on Instrumentation and Measurement,
69(7):4103–4113.

91

[56] Shafi, O., Rai, C., Sen, R., and Ananthanarayanan, G. (2021). Demystifying ten-
sorrt: Characterizing neural network inference engine on nvidia edge devices. In 2021

IEEE International Symposium on Workload Characterization (IISWC), pages 226–
237. IEEE.

[57] Shailaja, K., Seetharamulu, B., and Jabbar, M. (2018). Machine learning in health-
care: A review. In 2018 Second international conference on electronics, communica-

tion and aerospace technology (ICECA), pages 910–914. IEEE.

[58] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

[59] Siswanto, E., Ishizaka, J., Tripathy, S. C., and Miyamura, K. (2013). Detection of
harmful algal blooms of karenia mikimotoi using modis measurements: A case study
of seto-inland sea, japan. Remote Sensing of Environment, 129:185–196.

[60] SOFIA, F. (2018). The state of world fisheries and aquaculture 2018-meeting the
sustainable development goals. Fisheries and Aquaculture Department, Food and

Agriculture Organization of the United Nations, Rome.

[61] Su, L., Yang, X., Cao, B., Wang, Y., Li, X., and Lu, W. (2021). Development and
application of substation intelligent inspection robot supporting deep learning accele-
rating. In Journal of Physics: Conference Series, volume 1754, page 012170. IOP
Publishing.

[62] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Va-
nhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pages
1–9.

[63] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 2818–2826.

[64] Tao, L., Hong, T., Guo, Y., Chen, H., and Zhang, J. (2020). Drone identification
based on centernet-tensorrt. In 2020 IEEE International Symposium on Broadband

Multimedia Systems and Broadcasting (BMSB), pages 1–5. IEEE.

[65] Tilman, D. and Clark, M. (2014). Global diets link environmental sustainability and
human health. Nature, 515(7528):518–522.

[66] Traller, J. C. and Hildebrand, M. (2013). High throughput imaging to the diatom
cyclotella cryptica demonstrates substantial cell-to-cell variability in the rate and extent
of triacylglycerol accumulation. Algal Research, 2(3):244–252.

92

[67] Wahab, O. A., Mourad, A., Otrok, H., and Taleb, T. (2021). Federated machine
learning: Survey, multi-level classification, desirable criteria and future directions in
communication and networking systems. IEEE Communications Surveys & Tutorials,
23(2):1342–1397.

[68] Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S., Trick, C. G., Kudela,
R. M., Ishikawa, A., Bernard, S., Wulff, A., Anderson, D. M., et al. (2015). Harmful
algal blooms and climate change: Learning from the past and present to forecast the
future. Harmful algae, 49:68–93.

[69] Yang, D., Yu, W., Mu, H., and Yao, G. (2021). Dynamic programming assisted quan-
tization approaches for compressing normal and robust dnn models. In Proceedings of

the 26th Asia and South Pacific Design Automation Conference, pages 351–357.

[70] Yi, R., Cao, T., Zhou, A., Ma, X., Wang, S., and Xu, M. (2022). Understanding
and optimizing deep learning cold-start latency on edge devices. arXiv preprint ar-

Xiv:2206.07446.

[71] Yue, W., Wang, Z., Chen, H., Payne, A., and Liu, X. (2018). Machine learning with
applications in breast cancer diagnosis and prognosis. Designs, 2(2):13.

[72] Zhao, J. and Ghedira, H. (2014). Monitoring red tide with satellite imagery and
numerical models: A case study in the arabian gulf. Marine pollution bulletin, 79(1-
2):305–313.

[73] Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., and Zhang, J. (2019). Edge intelli-
gence: Paving the last mile of artificial intelligence with edge computing. Proceedings

of the IEEE, 107(8):1738–1762.

[74] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 8697–8710.

	3cb4d93d32dc4d45b65ef4a47541cf84816606edc17d3b1a6d858e426a9908d2.pdf
	3cb4d93d32dc4d45b65ef4a47541cf84816606edc17d3b1a6d858e426a9908d2.pdf
	3cb4d93d32dc4d45b65ef4a47541cf84816606edc17d3b1a6d858e426a9908d2.pdf
	Introduction
	Artificial Intelligence
	Edge Computing
	Edge Intelligence
	Federated Learning

	The Case Study: Edge Computing for Water Quality Management
	Data Science to Edge Deployment
	Research Questions and Objectives
	Aim
	Specific Objectives

	Background and Related Work
	Use Case Context, Traditional Standalone Devices
	FlowCam: manual and visual analysis
	FlowCytobot: in-situ applications
	FlowSight: from biomedical to marine applications
	PlanktonScope: A call for low-cost, community-based device

	AI Edge Devices: Beyond Traditional Devices
	Jetson NANO Plataform
	Model Optimisation

	Related Work

	Evaluation Methodology
	System Profiling to the Transition Challenge
	Case Study: Phytoplankton Dataset
	Classifier Models
	MobileNET V2
	NASNet Mobile
	Inception V3
	VGG

	Logger
	Experimental Design
	System Setup
	Experiments
	Performance and Energy Metrics

	Results and Discussion
	Accuracy
	Image Throughput
	NASNetMobile
	MobileNET
	VGG and Inception

	Power Consumption Profile
	MobileNetV2 Base Model
	MobileNet TRT-FP32
	MobileNet TRT-FP16
	NASNetMobile Base Model
	NASNetMobile TRT-FP32
	NASNetMobile TRT-FP16
	VGG Base Model
	Inception Base Model

	Memory Consumption
	MobileNET
	NASNetMobile
	VGG
	Inception

	CPU and GPU usage
	Performance and Costs Analyses
	MobileNetV2
	NASNetMobile
	VGG and Inception

	Key Findings

	Conclusion and Future Work
	References

