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RESUMO

OLIVEIRA, Guilherme Correa de. 3D Reconstruction and Elevation Angle Esti-
mation on Underwater Sonar Data. 2025. f. Master’s Dissertation Programa de
P6s-Graduagdao em Computagcdo. Universidade Federal do Rio Grande - FURG, Rio
Grande.

A exploragdo subaquatica possui diversas caracteristicas referentes ao seu meio que
limitam o uso de cameras Opticas, tornando os sonares de imageamento uma alternativa
vidvel. No entanto, as imagens de sonar sdo inerentemente ambiguas e ruidosas, o que
complica sua interpretacdo para a reconstru¢ao 3D. Embora o aprendizado de méaquina
possa mitigar esses problemas, sua aplicacdo é restringida pela escassez de datasets. Esta
dissertacao aborda esses desafios ao introduzir uma metodologia baseada em aprendi-
zado profundo para corrigir a ambiguidade de imagens de sonar, estimando o dngulo de
elevacdo para a realizacao de reconstrugdo 3D.

Uma das principais contribui¢des deste trabalho é o desenvolvimento de um data-
set chamado: Synthetic Enclosed Echoes (SEE), o qual é constituido por tanto dados
sintéticos quanto reais, criado em um ambiente de simulacdo de alta fidelidade que re-
plica um tanque de testes fisico. Para processar esses dados, propomos o ElevateNET-R,
uma rede neural baseada em regressio e adaptada para prever o angulo de elevacdo por
pixel a partir de uma unica imagem de sonar 2D.

Experimentos quantitativos demonstram que o modelo ElevateNET-R proposto supera
consistentemente os métodos existentes na literatura, incluindo abordagens cldssicas e
outros modelos baseados em aprendizado. Além disso, a eficacia da metodologia foi
validada em um experimento de simulagdo para o real (sim-to-real), no qual o modelo,
treinado exclusivamente com o conjunto de dados sintético SEE, realizou com sucesso
a reconstrucdo 3D de dados de sonar do mundo real. As principais contribuicdes sao
a disponibilizac¢do publica do conjunto de dados SEE e seu ambiente de simulac¢do para
fomentar futuras pesquisas e a validacao bem-sucedida de uma rede baseada em regressao
para a corre¢do da ambiguidade em sonares.

Palavras-chave: Imagens de Sonar, Reconstruciao 3D, Robética Subaquatica.



ABSTRACT

OLIVEIRA, Guilherme Correa de. A Integrated Approach to Sonar Data Analysis:
3D Reconstruction and Ambiguity Correction. 2025. f. Master’s Dissertation

Programa de P6s-Graduagdao em Computagcdo. Universidade Federal do Rio Grande -
FURG, Rio Grande.

Underwater exploration is hindered by environmental challenges that limit the use of
optical cameras, making imaging sonars a viable alternative for imaging. However, sonar
images are inherently ambiguous and noisy, which complicates their interpretation for
3D reconstruction. While machine learning can mitigate these issues, its application is
restricted by the scarcity of suitable datasets. This dissertation addresses these challenges
by introducing a deep learning-based methodology to correct sonar image ambiguity by
estimating the elevation angle for 3D reconstruction.

A primary contribution of this work is the development of the Synthetic Enclosed
Echoes (SEE) dataset, a new, comprehensive collection of annotated synthetic and real-
world sonar data, created within a high-fidelity simulation of a physical test tank. To
process this data, a new methodology called ElevateNET-R is proposed, which is a
regression-based neural network adapted to predict the per-pixel elevation angle from
a single 2D sonar image.

Quantitative experiments demonstrate that the proposed ElevateNET-R model consis-
tently outperforms existing methods from the literature, including classical approaches
and other learning-based models. Furthermore, the effectiveness of the methodology was
validated in a sim-to-real experiment, where the model, trained exclusively on the syn-
thetic SEE dataset, successfully performed 3D reconstruction on real-world sonar data.
The primary contributions are the public release of the expansive SEE dataset and its sim-
ulation environment to foster further research, as well as the successful validation of a
regression-based network for correcting sonar ambiguity.

Keywords: Sonar Image, 3D Reconstruction, Underwater Robotics.
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1 INTRODUCTION

The use of 3D data can be very useful for a wide variety of applications, such as buil-
ding maps, performing inspections, and environmental monitoring, among others [24].
The workflow known as 3D reconstruction is based on using sensors to collect the cha-
racteristics of the environment and targets, and stitching algorithms to structure what is
being observed, thereby obtaining the characteristics of the scene and target, and restoring
them [23]].

Significant advancements have been made in underwater 3D reconstruction using op-
tical sensors [14]. However, optical sensors face inherent limitations in underwater en-
vironments, such as rapid attenuation of light-wave energy, high turbidity, and low-light
conditions [9, 10]. Consequently, these limitations often hinder the ability of optical sen-

sing to meet the demands of real-world applications [13]].

On the other hand, the use of acoustic sensors can become an excellent alternative for
applications in real environments [8]], given that sonar wave propagation in water has the
characteristics of low loss, strong diffraction ability, long propagation distance, and little
influence on the water quality conditions [[7,21]. With this, it is possible to achieve better
results in more complex underwater environments, even in the absence of light sources,
compared to optical sensors. Therefore, underwater 3D reconstruction based on sonar
images has a good research prospect. However, sonar also has the disadvantages of low
resolution and difficult data extraction, due to the ambiguity in the sonar images and the

inability to provide accurate color information.

1.1 Contextualizing

One of the biggest challenges of working with sonar images obtained by active acous-
tic sensors, for example, imaging sonars, is the inherent effects of this type of sensor, such
as ambiguity, reverberation, and other noises present in this type of sensor [35]. In turn,
these problems inherent to the sensor can be minimized through computational strategies,
such as data filtering and post-processing. Currently, there is no definitive solution to

these problems, and a significant demand exists for research on these topics.
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Characterizing sonar noise is a complex task, and even when modeled, it imposes sig-
nificant computational overhead [30]. Furthermore, modeling certain effects, such as the
sensor’s ambiguity, presents considerable difficulties. An alternative approach to noise
mitigation involves employing learning-based methods, which effectively model and abs-
tract these intricate effects. However, a major limitation of learning algorithms is their
substantial data requirement. Existing sonar datasets are notably scarce, primarily due
to the high cost of sonar equipment and the logistical and infrastructural complexities
associated with data collection.

Nevertheless, synthetic data for training learning methods is gaining prominence, as
demonstrated in [43]], where a purely synthetic dataset was used for monocular camera
depth estimation. This concept of synthetic image data can be extended to sonar data,
provided a reliable sonar simulation is available to accurately replicate the effects and

nuances observed in real acoustic images.

1.2 Problem Definition

The 3D reconstruction of submerged structures is critical for applications like infras-
tructure inspection, but it is often impeded by low-light and high-turbidity environments
where optical cameras are ineffective. While imaging sonars serve as a viable alternative
in these challenging conditions, they introduce a fundamental obstacle to 3D reconstruc-
tion: inherent data ambiguity.

The central problem is that an imaging sonar scans a three-dimensional space defined
by range (r), azimuth (6), and elevation (¢). However, it projects this information onto
a two-dimensional image, discarding the crucial elevation angle (¢) for each acoustic
return. This loss of the elevation dimension makes it impossible to determine the true 3D
coordinates of a point from a single 2D sonar image, presenting the primary barrier to 3D
reconstruction.

Furthermore, while deep learning methods offer a promising pathway to resolve this
ambiguity by estimating the missing elevation angle, their development is severely cons-
trained. These algorithms require large, accurately annotated datasets for training, yet
there is a pronounced scarcity of public sonar datasets specifically designed for 3D re-

construction tasks. This data bottleneck significantly hinders progress in the field.

1.3 Objectives

In response to the problem of data ambiguity in sonar imaging, this work’s primary
aim is to develop and validate a comprehensive deep learning methodology for 3D re-

construction. The following high-level objectives guide the research:

* To develop and contribute a novel, large-scale annotated sonar dataset to address the
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resource scarcity in the field and enable robust training and evaluation of learning-

based 3D reconstruction models.

* To design and implement a deep learning framework to estimate the elevation angle

from a single 2D sonar image.

* To validate the proposed methodology by quantitatively demonstrating its perfor-
mance against state-of-the-art methods and qualitatively confirming its effective-

ness through sim-to-real transfer experiments on real-world sonar data.

1.4 Organization of the Text

The organization of this work is given as follows: Chapter [2| presents a literature re-
view of relevant works on 3D reconstruction of cameras and sonar, and brings a deep
evaluation of sonar datasets for 3D reconstruction, followed by Chapter @ where a The-
oretical Background about the main characteristics of imaging sonars is presented. The
presentation of simulators, the simulation environment, and the methodology proposal are
provided in Chapter[d] All the results obtained with this work, along with the discussion,

are presented in Chapter[5] The conclusions of this work are presented in Chapter [6]



2 LITERATURE REVIEW

There is a large literature on 3D reconstruction, among which the most commonly
used sensors for this activity are cameras, lidars, sonars, and radars. In this work, since
the operation of radars and lidars in an underwater environment is very limited and the
nuances of the environment can also lead to different methodologies, since obtaining data
in aquatic environments is a more complex activity that can lead to drastic changes in
methods, with this in mind, this work focuses mainly on reviewing work on camera and

sonar applications.

The largest scope of application for imaging radars today is in their use for autono-
mous cars, as evident in the papers [36], [19]. As with sonars, there is a high level of
ambiguity associated with the use of radar images, and many techniques for processing
these images are similar. Still, due to the great difference in medium, radars will not be

explored further in this work.

2.1 3D Reconstruction of Optical Images

Underwater 3D reconstruction using cameras is a reasonably mature area of research,
and one of the biggest advantages of using optical sensors is that they are relatively inex-
pensive and effective under certain conditions. Structure from Motion (SfM) is a method
used to perform 3D reconstruction of underwater scenes using cameras. The strategy was
originally described by Longuet-Higgins in [20]. This technique is based on performing
3D reconstruction using a monocular camera, where images of a given scene are triangu-

lated to determine the relative position of the camera and its movements.

Due to the refraction characteristics of the aquatic environment, more modern techni-
ques such as Refractive Structure from Motion (RSfM) are employed, where this method
utilizes the refraction index of the water to estimate the camera’s position more accura-
tely. In this regard, it is worth highlighting the work by Chadebecq et al. [3]], in which an
RSfM framework was developed for a camera looking through a thin refractive interface

to refine an initial estimate of the relative camera pose.

Another strategy used for 3D reconstruction is photometric stereo. These methods
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have been well studied and show very promising results. Still, their performance can
vary considerably according to some particularities of an underwater environment, such

as light scattering, refraction, and energy attenuation [42].

In photometric stereo 3D reconstruction, it is worth highlighting some notable works,
such as [ao et al. [15]], where a multi-spectral photometric stereo approach was proposed.
This method used linear iterative clustering segmentation to solve the problem of multi-
color scene reconstruction. In the work by Fan et al. [11], the combination of underwater
photometric stereo and underwater laser triangulation is considered. It was used to over-
come the large shape-recovery imperfections and improve underwater photometric stereo

performance.

2.2 3D Reconstruction of Acoustic Images

The problem of 3D reconstruction using sonar images remains open due to various
issues, including noise and ambiguities in sonar. Among the various sonar models,
Forward-Looking Sonars (FLS) are one of the best alternatives for 3D imaging and re-
construction. This work will focus on this specific type of sonar due to its characteristics

and advantages associated with imaging and reconstruction activities.

In this context, we can highlight the work of Guerneve et al. [12]], which uses a Blue-
View imaging sonar to perform 3D reconstruction, proposing a methodology that recons-
tructs the target without knowing its shape a priori and uses a simplified mathematical
model of the sonar and some filters to perform the reconstruction from a series of collec-
ted images. Other works, such as Rahman et al. [29]], propose a setup that uses a stereo
camera, an inertial sensor, a depth sensor, and a mechanical scanning profiling sonar to

perform contour-based reconstruction.

McConnell et al. [25] propose a novel strategy to deal with the ambiguity associated
with the sonar’s elevation angle, using two FLS sonars, one positioned vertically and
the other horizontally, thus generating overlapping fields of view, making it possible to
create a matching of points and try to correct ambiguity errors. Kim et al. [17] propose
a methodology for generating 3-dimensional maps from a single sonar installed on an
autonomous underwater vehicle (AUV). The proposal is based on two main processes:
2D image reconstruction and point cloud generation. The fusion of these two methods
generates a 3D map.

The use of learning methods is growing in prominence, and in the context of 3D
reconstruction for sonar imaging, this is no different. These learning methods can be
divided into two main groups: those based on supervised learning and those based on
self-supervised learning. The main difference between these methods lies in the presence
of ground truth, with supervised methods utilizing data that includes ground truth and self-

supervised methods not requiring it, as seen in works based on supervised learning. In
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the paper Sung et al. [37] propose a sonar-based underwater object classification method
by reconstructing an object’s 3D geometry. In this work, a point cloud is generated from
sonar images. Then, a neural network is used to predict the class of the object partially
seen in the point cloud. The proposed framework will only successfully 3D reconstruct

an object that matches the trained classes.

Debortoli et al. [4] propose an application of a neural network to address the am-
biguity problem in sonar images. Their strategy employs a modified U-Net architec-
ture [31], utilizing an elevation map as ground truth. Debortoli in this work leverages
synthetic data to create a small dataset, with the network initially trained on this synthetic
data generated using a simulator developed by Cerqueira et al. [2]. The synthetic dataset
comprises 8,454 images of spheres, cylinders, and cubes. Subsequent fine-tuning is per-
formed using real-world data, consisting of 4,667 sonar images obtained with a Tritech
Gemini 7201 imaging sonar from custom-built concrete targets in the shape of spheres, cy-
linders, and cubes. The proposed methodology employed a very small sample of objects,

resulting in an overfit approach for 3D reconstruction.

Wang et al. [39, 38] proposed a novel ground truth representation that generates a
pseudo-front-depth map. This approach aims to perform 3D reconstruction through su-
pervised learning. They created a small simulated dataset using a Blender-based simula-
tor. The dataset comprises an artificial environment, terrain, and spheres, with 3D CAD
models serving as ground truth. The real-world dataset was acquired in a large-scale
water tank using a Sound Metrics ARIS EXPLORER 3000 imaging sonar, replicating
the simulated objects and scenarios. This methodology requires that the real objects to
be constructed have their front-view image previously collected in simulation, making it

difficult to execute in different scenarios.

Within the domain of self-supervised learning, Qadri et al. [28] presented a technique
for 3D reconstruction based on a neural network architecture named NEUSIS. Their work
involved creating both simulated and real-world datasets. The simulated dataset, acqui-
red using HoloOcean [26], comprises sonar images of two objects, each in three distinct
configurations. The real-world datasets were collected using a Sound Metrics DIDSON
imaging sonar to capture data from a test structure submerged in a test tank. Three data-
sets were captured, corresponding to the sonar’s feasible elevation apertures (1°, 14°, and
28°). However, the method proposed by the author has difficulties reconstructing multiple
objects in the scene and requires a long training time, thus limiting its operation to more
specific cases.

Wang et al. [40] employed a self-supervised learning methodology, utilizing the same
dataset as in [39] and [38]]. However, sensor position and motion information were in-
corporated as inputs for each sonar image, enabling self-supervised learning. The metho-
dology was validated using both synthetic and real-world data. Despite its contributions,

this work has two primary limitations: the long training durations characteristic of self-
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supervised methodologies and a dependency on auxiliary data beyond sonar imagery,
which poses challenges for reproducibility.

Given these works, the table m summarizes and best exemplifies the work related to
3D reconstruction using acoustic sensors.

In summary, while significant strides have been made in employing metemathical
and learning-based methods for sonar image processing, the literature reveals a notable
disparity in dataset availability. As highlighted by [1]] in their survey, most publicly avai-
lable sonar datasets are primarily geared towards object classification tasks. Conversely,
datasets specifically designed for 3D reconstruction from sonar imagery remain severely
limited. This scarcity underscores the need for dedicated datasets, such as the SEE dataset
proposed in this work, which is more complete by providing a greater variety of objects
and more detailed feature information, to facilitate advancements in 3D reconstruction

methodologies for underwater environments.
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Table 1: Table of works related to 3D reconstruction using acoustic images

3D reconstruction
of acoustic images

Mathematical methods
for
3D reconstruction

Learning algorithms
for
3D reconstruction

Simulated
experiments

Field
experiments

Tank
experiments

Single
sonar

Multiple
sonars

Cameras
and Sonar

Guerneve, T. 2015 [12]

X

X

Rahman, S. 20219 [29]

X

X

McConnell, J. 2020 [25]

X

Kim, B. 2021 [17]
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Sung, M. 2020 [37]
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Westman, E. 2020 [41]
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|

DeBortoli. 2019 [4]

Wang, Y. 2022 [38] [39]

Qadri, M. 2023 [28]
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3 THEORETICAL BACKGROUND

Building on the discussion in the previous sections, this work focuses on the applica-
tion of imaging sonars. This chapter will discuss and present the main characteristics of
these sensors, their operation, the primary sources of noise, and the challenges associated

with working with acoustic data.

Imaging sonars are active devices that generate acoustic pulses to produce images.
The waves propagate through the medium until they reach an obstacle or are completely
absorbed by the environment. When a wave hits an object, part of its wave energy is
absorbed and part is reflected. The reflected part that returns to the sonar is measured by

its hydrophones. The wave’s travel back and forth is known as a ping.

The hydrophones capture acoustic signals, which are then processed and organized
based on their direction of arrival 6,;, and distance traveled 7, to the reflecting object.
This discretization process utilizes bins with an angular width of A8, (beamwidth) and

a range interval of Apy;, (range resolution).

Signals returning from the same direction constitute a beam. A sonar ping generates a
fan-shaped image I(B, b), as depicted in Figure[I} where I(B, b) represents the intensity of
beam B at bin b. This image represents a range and bearing (angular variation) determined
by the sonar’s design, which includes factors such as acoustic frequency and the number
of hydrophones. The maximum imaging range can be adjusted by modifying the ping
duration.

An intrinsic problem in the generation Sonar images is the inhomogeneous resolution,
in the figure |1] it can be clearly seen that the more distant bins have a larger area when
compared to the bins closer to the sensor, this difference means that more distant bins
have a lower effective resolution, given that each bin represents one pixel in an image and
thus objects further away from the sonar have a lower resolution.

Although the image obtained by the sonar represents a 2D plane, its acoustic beams
have an elevation angle, so that the effective field of view of a sonar is a 3-dimensional
space. As a result of this simplification of dimensions, it becomes highly ambiguous, as
the elevation information of each bin is suppressed during image formation [16]. The

true field of view of a sonar can be understood by two angles: horizontal field of view
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Fig 1: A scheme of an acoustic image of imaging sonar

and vertical field of view, which are respectively referred to as # and ¢, or azimuth and

elevation. The image 2] exemplifies the 3D space seen by the sonar.

Fig 2: The 3D field of view of an imagin sonar

Besides problems directly related to the acquisition of sonar data, images can also be
affected by the environment or the method of collection. For example, in sonar images,
deformations may occur due to the sensor’s movement during the collection process. This
effect, known as acoustic distortion, causes objects in the image to appear flatter. There is
also a non-uniformity associated with the image pixels, which can occur due to specific
water conditions, such as interference between the sonar hydrophones [33]].

Acoustic sensors are often affected by environmental reverberations. The pulses emit-
ted are frequently reverberated by objects in the environment, causing echoes to be detec-
ted by the sonar, which can generate phantom objects in the sonar image. Additionally,
shadow effects occur when an object completely blocks sound from passing through,

resulting in empty spots in the sonar images. In addition, this type of sensor is usually
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sensitive to noise due to the signal-to-noise ratio, which is accentuated by the reflection of
other waves on the surface of the water, from mutual interference causing speckle noise,
from underwater engines of nearby surface vehicles, or other acoustic sensors[6].

The estimation of the suppressed elevation angle in the sonar image will be the pri-
mary focus of this work, since once this information is discovered, 3D reconstruction
becomes a more trivial problem, and the other noises associated with acoustic data can
still be mitigated by filters or even corrected during the methodology used to estimate the
elevation angle.



4 PROPOSED METHODOLOGY

Based on the discussions in previous chapters, this work aims to achieve the proposed
objectives by employing a hybrid strategy that combines development in simulated and
physical environments. Taking work [28] as a starting point, where learning methods are
used to carry out 3D reconstruction, and simulators are used to build a dataset that will
serve as a training base for the methods developed at the end of the study. With this as a
foundation, this work aims to develop a similar strategy. Still, with a stronger focus on
the data, the primary objective of the work is to develop a diverse dataset comprising a
broader range of sonar images in various scenarios. Throughout this chapter, each part of
the proposed methodology will be described, from the choice of simulator to the proposed
dataset and the proposed experiments.

The Figure 3| provides a comprehensive overview of the proposed sim-to-real metho-

dology for 3D reconstruction. The workflow is divided into two distinct stages:

1. A simulation environment where raw sonar images and their corresponding ground
truth are generated. This paired data is used to train the ElevateNet R network to
predict an elevation map from a single sonar image, which is then used to create an

initial 3D reconstruction.

2. Inference on real data where the model, trained exclusively on synthetic data, is
then applied to real-world sonar images collected from a physical experiment. This
inference step generates multiple elevation predictions from the real sensor data,
which are subsequently fused to produce the final 3D reconstruction of the real-

world scene.

4.1 Simulation

Simulators have emerged as tools for robotics research, mitigating the substantial ma-
terial and logistical costs associated with practical experiments, particularly underwater
robotics. Modern simulators offer comprehensive modeling of vehicle and environmen-
tal dynamics, along with sophisticated sensor models, enabling the acquisition of high-

fidelity data and facilitating translation from simulated to real-world applications.
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Fig 3: A comprehensive overview of the proposed sim-to-real methodology for 3D re-
construction

Among the available simulation platforms, Gazebo [[18]] stands out as an open-source

simulator that is continuously enhanced by the community and features numerous vehi-

cle and sensor simulation packages. It incorporates the UUV Simulator [22] package,

which provides detailed simulations of remotely operated vehicles (ROVs), water dyna-

mics, ocean currents, and sonar simulation [2].

HoloOcean [20] presents another viable simulator option, an open-source underwater

simulation platform built on the Unreal Engine. This relatively new simulator incorpo-
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rates models for underwater vehicles, including ROVs and AUVs, and a suite of sensors
such as Inertial Measurement Units (IMUs), Global Positioning Systems (GPS), cameras,
Doppler Velocity Logs (DVLs), and imaging sonar models. HoloOcean’s sonar simula-
tion replicates a diverse range of acoustic phenomena within the environment by utilizing
octrees to describe the environment and subsequently performing calculations that si-
mulate sound interaction with each environmental particle, resulting in one of the most
realistic sonar simulations currently available [27]].

For this study, HoloOcean [26] [27] was selected as the simulation platform. Several
factors influenced this decision, including the high fidelity of its sonar imaging simula-
tions, the ongoing updates and development of the simulator, its extensive expandability
as an open-source project, and its implementation within the Unreal Engine, which ena-
bles high-quality visual effects and the creation of large-scale scenarios with manageable
computational demands. The primary drawback associated with HoloOcean’s sonar si-
mulation is its potential computational cost, which can vary depending on the resolution
and noise levels applied.

The purpose of using a simulator is to develop strategies that transition from simulated
to real environments, where it is easy to obtain highly reliable synthetic data. This enables
the reduction of real missions and experiments, thereby significantly reducing costs and
accelerating development. To this end, a simulated environment was developed that re-
presents one of the facilities of the Federal University of Rio Grande (FURG), specifically
the tank located in the Aquatec building, as shown in Figure 4| The tank has dimensions
of 7 meters in width, 7 meters in length, and 4.5 meters in depth. The materials and di-
mensions of this tank were carefully considered to ensure it could be integrated into the

simulator.

4.2 Dataset Proposal

Having defined the simulator and the environment that will serve as a reference,
another requirement of this work is a dataset with ground-truth information that can be
used as a training base for learning methods. To this purpose, some key topics have been

defined to guide the construction and generation of this data set:

The data set needs to be composed of sonar data that has ground truth

The simulation environment must be expandable and replicable

The simulation environment must be able to simulate different sonar configurations

The environment must have a range of objects, from simple structures to more com-

plex structures that need to be minimally relevant to an underwater environment.
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Fig 4: Aquatec Tank Facilities

* The simulation environment must provide a variety of scenarios for a closed envi-

ronment.

 Data collection must be structured and have position reference information for each

image, as well as images from different angles.

To fulfill the demands of the dataset, a world was built using the Unreal Editor to con-
tain a representation of the tank, and a series of objects were added, including geometric
solids, helices, anchors, and underwater civil construction materials such as trusses and
concrete blocks. A key consideration for the objects was their dimensions, which needed
to be centered within the tank and allow a vehicle to navigate around the target while
collecting data without colliding with the objects.

Due to limitations in the simulator, such as the inability to dynamically position ob-
jects for interpretation by the sonar, it was necessary to develop a world in which the
objects to be observed were statically pre-positioned. As a result, four different worlds
were built, each with 64 tanks, 40 of which are filled with simulation props. The diffe-
rence between the worlds is in the location of the props, which are floating, positioned at
the bottom of the tank, positioned floating near a wall, and positioned at the bottom near a
wall. The aim of creating these worlds is to expand the possibilities for locating the same

object, from simple scenarios to more challenging ones, thereby expanding the variety of



24

simulated data. Figure [3illustrates the scenarios and data obtained in this work, which
comprise the Synthetic Enclosed Echoes (SEE) dataset.

This figure [5]illustrates the composition of the proposed dataset, which contains both
synthetic and real-world components. The synthetic data, shown in the top panel, is or-
ganized into four distinct scenarios. For each scenario, the dataset provides multiple data
representations: the visual context from the simulation environment, the raw sonar out-
put in a fan-shaped Cartesian image, the processed polar image, often used as network
input, and the corresponding ground-truth 3D point cloud. The bottom panel presents a
parallel example from real-world data, including the physical experiment scenario and its

resulting sonar images, which highlight the dataset’s utility for sim-to-real validation.

-
Synthetic Data
1- Scenario 2 - Scenario 3-Scenario 4 - Scenario
Simulation
Environment
Cartesian
Image
Polar
Image
Ground
Truth
.
{
Real data
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Fig 5: Synthetic Enclosed Echoes: a new dataset of synthetic and real-world sonar data
for a closed underwater environment

The dataset proposed in this work is based on a collection of structures commonly
found in underwater scenarios, such as barrels, trusses, and other structures widely used
in submerged constructions. The Computer-Aided Design (CAD) files of these objects
will serve as ground truth, and the same objects will be instantiated within the simulated
environment with their geometry and materials duly described. The idea is that for each

CAD file, there will be an associated point cloud as well as sonar images with different



noise intensities. Figure [0]illustrates the sixteen geometric primitives present in the data-
set, Figure [7|exemplifies the eight models of propellers present in the dataset, the Figure
[8] shows the eight models of anchors used in the dataset, and Figure [0 represents all the
construction materials present in the dataset. With all these assets, the dataset comprises

forty different objects in four distinct scenarios, resulting in 160 different combinations.

Geometric Primitives

Fig 6: Geometric primitives used in the dataset.

4.2.1 Syntethic Data Collection

Once the simulation worlds were completed, it was necessary to define a methodology
for data collection so that the data would be standardized and replicable across different
scenarios. The strategy adopted was to create a circular trajectory around the target, with
waypoints defined every 10°. The vehicle always navigates, keeping its center aligned
with the object so that it never leaves the sonar’s field of vision.

The simulated sonar was configured to emulate the BlueView P900, which was used
in our real experiments. It operates with a 130° horizontal and 20° vertical field of view,
a maximum range of 10 meters, and an output resolution of 768 angular beams by 394
range bins. To further bridge the reality gap, the simulator’s noise characteristics were

manually tuned to match the output of the physical sensor visually.
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Fig 8: Anchors models used in the dataset.
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Fig 9: Construction assets used in the dataset.



27

A group of four scenarios was defined to ensure greater coverage of the objects’ pla-
cement. The first scenario involves the object floating and positioned in the center of the
tank. To collect the data, a ring path was defined, where the height of the vehicle varies
as it completes a lap around the object. This circle has a radius of 2 meters, and further
circles are created spaced 0.3 meters apart until the entire height of the object has been

covered.

For the second scenario, the object is fixed to the bottom of the tank. For this scenario,
the trajectory to be covered is circular. Still, without varying the height, by varying the
radius of the circles, since the height of the reference points is always 1 meter above the

object to be observed, the sonar is rotated by —45° in the pitch for this scenario.

The third scenario is similar to the first one, with the key difference being that the
object is positioned close to a wall of the tank. A similar trajectory to the first scenario
is defined, albeit with a semi-circular path. The fourth scenario combines the third and
second scenarios, where the object is positioned at the bottom of the tank and close to the
wall, creating a challenging scenario for 3D reconstruction tasks. The data is collected
in the same pattern as in the second scenario, but in a semi-circular trajectory. Figure [T0]
summarizes the four projected scenarios and the proposed paths; the green spots in the

illustration indicate the waypoints that the vehicle will cover during data collection.

Paths For Each Scenario

f 1 - Scenario 2 - Scenario \

’

3 - Scenario 4 - Scenario

Fig 10: Proposed scenarios for the dataset and their respective way-points
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4.2.1.1 Ground Truth

The ground truth generation for the sonar data is based on a simulated Lidar array
designed to match the sonar’s field of view, as shown in Figure[2] This array is constructed
by placing a virtual laser rangefinder at each discrete azimuthal beam angle (#) of the
sonar. This line of sensors is then replicated for every one-degree increment along the
elevation axis (¢), forming a comprehensive grid of virtual sensors.

The data from this sensor grid is then transformed into a 2D ground truth map. This
map uses the same range and azimuth coordinate system as the sonar image. The cru-
cial ground truth information, the true elevation angle (¢) of each return, that is a value
between 0 and 20, is encoded as the intensity value of the corresponding pixel. The final
output is an elevation mask that is dimensionally identical to the sonar image, where each
pixel’s value directly provides its ground truth elevation. The figure [I1] exemplifies the

ground truth data used in this work.

4.2.1.2 Single-View

In the Single-View strategy, data is acquired from a predefined set of fixed viewpoints
distributed around the object. These viewpoints are positioned within a single horizon-
tal plane and are oriented towards the center of the target geometry. This configuration
represents a conventional approach in scenarios utilizing vehicle-mounted sonar sensors,
where data acquisition typically occurs at a constant altitude (or depth) and with a fi-
xed sensor orientation. However, being restricted to a single plane of observation, this
strategy has inherent limitations in resolving vertical features and capturing data from

occluded regions.

4.2.1.3 Multi-View

The Multi-View strategy enhances the previous approach by introducing multi-
perspective data acquisition through systematic variation of the sensor’s pitch angle at
each viewpoint. Specifically, data is collected at three distinct inclinations (—10°, 0°, and
10°). This technique is designed to mitigate the inherent spatial ambiguity of imaging
sonars, as the introduction of pitch variations creates local parallax between adjacent vi-
ews—a mechanism exploited in multi-view stereo methods to infer the elevation angle.
For a conclusive validation of the methodology’s generalization performance, we used
real-world images from a BlueView P900 sonar, which our synthetic data was designed
to emulate. Following a sim-to-real approach, the models were trained entirely on synthe-
tic data and then tested on the real-world data. This experiment is designed to determine
which input data representation yields the most accurate 3D reconstructions of previously
unseen, real-world scenes. Real-world images were collected in a controlled experiment
using a sonar-equipped ROV. A plastic pipe (0.2 m diameter) was used as the reconstruc-

tion target. The experiment took place in a 7 x 7 x 5 m indoor tank, as shown in Figure
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(b) Point cloud style ground truth

Fig 11: The two ground truth formats used in this study. The 2D elevation mask
provides a per-pixel ground truth for the network. [ITb] The 3D ground truth point cloud
serves as the reference for geometric accuracy evaluation.



30

M] mirroring the simulation environment. The ROV performed a vertical trajectory while
recording sonar images, vehicle orientation (roll, pitch, yaw), and depth from an acoustic

altimeter. Figure[T2]shows the vehicle used for the data acquisition.

Fig 12: Modified versions of the Blue ROV2 used during the real data colection

The collected sonar images were synchronized with the vehicle’s navigation data. A
pre-processing pipeline was applied to the real-world images to address discrepancies
with the synthetic data. The raw acoustic images have a 16-bit echo resolution, whereas
the simulated images are 8-bit. Therefore, the real images were first down-sampled to
8-bit resolution. Secondly, to mitigate the higher noise levels present in the real data, a
filtering step was performed to remove low-intensity echoes that would otherwise appear
as noise points in the image. The effect of this intensity filtering is illustrated in Figure

[13] which shows a real sonar image before and after pre-processing.

4.3 3D Reconstruction of the Sonar Data

A fundamental challenge in 3D reconstruction from imaging sonar is resolving the
elevation angle (¢) for each acoustic return, as the sensor typically provides only range
and azimuth data. Conventional methods address this ambiguity with a simplifying planar
assumption, where all returns are presumed to lie on a single plane at ¢ = 0°. Under this
assumption, each sonar image is treated as a 2D slice of the environment. By aggregating
multiple, overlapping 2D scans from different viewpoints, a complete 3D model of the
scene can then be progressively constructed. After that, we use a polar-to-Euler, Equation

[T} angle transformation to put the sonar data in a 3D plane.

x r cos 0 cos ¢
y| = |[rsinfcos ¢ (1)
z

rsin ¢
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Fig 13: Real sonar data in the Polar form (Azimuth x Radius), the top image is the raw
image and the bottom is the image after the echo intensity filter

The neural network is employed to estimate the elevation angle, thereby enabling
more precise 3D reconstructions from sonar data. The proposed methodology builds
upon the network architecture introduced by deBortoli et al. [4], adapting it into a re-
gression framework to achieve improved performance in elevation angle prediction. The

3D reconstruction pipeline is illustrated in Figure [T4]

The ElevateNET-R model is built upon a U-Net architecture, a type of encoder-
decoder network well-suited for image-to-image tasks. The encoder progressively down-
samples the input sonar image through a series of convolutional layers to capture high-
level contextual features. The decoder then symmetrically upsamples these features, using
skip connections to merge them with high-resolution features from corresponding enco-
der layers. This process allows the network to preserve precise spatial details in the final

output.

For this work, the architecture was specifically adapted for a regression task by mo-
difying the final output layer to predict a continuous value—the elevation angle—for each
pixel. The network was trained using the Mean Squared Error (MSE) loss function, which
effectively minimizes the average squared difference between the predicted elevation map
and the ground-truth elevation mask, thereby optimizing the model for geometric accu-
racy. The model was trained for 300 epochs with a batch size of 10. We used the RMSprop

optimizer with an initial learning rate of 10~° and a weight decay of 1075,
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Fig 14: The ElevateNET-R reconstruction pipeline. A single sonar image is fed into the
regression network, which predicts an elevation angle for each pixel. This elevation map
is then used to project the sonar returns into 3D space, generating the final point cloud of
the object.

4.4 Evaluation Metrics

The primary metric employed to validate the experiments was the Hausdorff Dis-
tance [34], chosen to evaluate the final 3D geometry. This metric measures the grea-
test distance from a point in one point cloud to the nearest point in the other, making
it sensitive to shape deviations. A lower Hausdorff Distance indicates a more accurate
reconstruction, with an ideal value of 0.

To enable a fair and reliable comparison, the ground truth (GT) was generated using a
simulated laser sensor configured with the same geometry as the sonar. By casting beams
across the same field of view (along the ¢ angle) without the characteristic ambiguity of
the sonar, this approach produces a high-fidelity 3D reference. This GT serves as the
basis for computing the Hausdorff Distance, ensuring that discrepancies measured by the
metric reflect only the differences between the reconstructed geometry and the true object

shape.



5 RESULTS

A series of experiments was conducted to evaluate current 3D reconstruction methods.
Three distinct objects, a cone, a propeller, and a tetrapod, were selected for this compara-
tive analysis across all four simulation scenarios. Figure[I5]illustrates the ground truth 3D
reconstruction. Figure[I6]shows the 3D reconstruction when using a mathematical appro-
ach, where the estimation of ¢ = 0 is considered, Figure [17|represents the results when
using the Neusis methodology [28]], Figure |18|illustrates the 3D reconstruction using the
methodology proposed in [4]], the results obteineds with the proposed methodoly can be
see in the figure[T9]

To evaluate the generalization capabilities of the proposed methodology, a new trai-
ning set was created by removing the objects to be reconstructed from the original training
batch. The result of this experiment can be seen in the Figure 20| To finalize the 3D re-
construction using the synthetic data, the proposed methodology was trained on a new
batch of data, employing the multiview strategy; the results are shown in Figure

It was observed that Neusis [28] failed to produce any discernible 3D reconstructions.
The training of this method was performed on a GPU cluster comprising two NVIDIA
Tesla V100 GPUs with 32GB of VRAM, enabling the simultaneous training of two mo-
dels. The training duration ranged from 20 to 35 hours. It is hypothesized that Neusis’s
poor performance may be attributed to its original design, which does not account for
environments containing multiple objects.

The classical approach exhibited significant limitations, yielding the sparsest point
clouds. ElevateNET [4] successfully reconstructed the tank walls and bottom but produ-
ced suboptimal results for the primary objects of interest.

The proposed methodology outperformed ElevateNET in all scenarios, achieving su-
perior reconstruction quality. While these results could indicate overfitting, the perfor-
mance of ElevateNET-R*, where the reconstructed objects were excluded from the trai-
ning dataset, demonstrated the proposed method’s ability to learn generalized features,
surpassing the original ElevateNET.

While the multi-view strategy was expected to improve reconstruction by providing

additional geometric constraints, our results show it performed worse than the single-view
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Fig 15: 3D recosntruction ground truth

Classic

Fig 16: 3D reconstruction using a classic approach, where the estimation of the ¢ = 0.
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NEUSIS

Fig 17: 3D recosntruction using the Neusis [28]]

ElevateNET

Fig 18: 3D reconstruction using the ElevateNET [4].
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ElevateNET R

Fig 19: 3D reconstruction using the algorithm proposed in this work.

ElevateNET R*

Fig 20: 3D reconstruction using the algorithm proposed in this work, where the recons-
tructed objects were excluded from the training dataset
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IevaeNET R - Multivie

Fig 21: 3D reconstruction using the algorithm proposed in this work, where the multiview
data is the training dataset.

approach. This counterintuitive outcome is likely due to the introduction of more complex
and non-stationary acoustic noise in the multi-view data. Capturing images from multiple
pitch angles within the enclosed tank environment resulted in a higher degree of noise,
including inconsistent acoustic shadowing and more varied multipath reverberations from
the tank walls, floor, and water surface. This complex noise profile appears to have hinde-
red the network’s ability to converge on the underlying object geometry, making it more
difficult to distinguish true structural features from acoustic artifacts compared to the more
consistent noise patterns present in the single-view dataset.

For the proposed methodology, the training time ranges from 8 to 12 hours, using a
computer equipped with an NVIDIA RTX 4090 graphics card featuring 24 GB of VRAM,
and the inference time ranges from 4 to 5 seconds.

The Hausdorff [34] distance, both in terms of mean and root mean square, was em-
ployed for quantitative comparison. Table 2] summarizes the numerical results.

In addition to the quantitative analysis, we conducted a qualitative evaluation on real-
world data to assess the sim-to-real transfer performance. For this experiment, we selected
the best-performing models from our simulation experiments, the models trained with
the cylindrical and mesh-based coverage strategies, which yielded the lowest Hausdorff
Distance scores. These pre-trained models were then used to perform inference on the
real sonar images. The resulting elevation maps were subsequently converted into 3D

point clouds, providing a qualitative basis for comparison, as illustrated in the Figure 22]
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(a) Experimental setup. (b) reconstruction using ElevateNET-R
single-view model.

(c) Reconstruction using ElevateNET-
R multiview model.

Fig 22: Qualitative comparison of reconstruction results on real-world sonar data.
The experimental setup, showing the plastic pipe target within the indoor tank. 22b] 3D
reconstruction generated by the model trained with the ElevateNET-R single-view model.
3D reconstruction generated by the model trained with a multiview data strategy. In
both 22b]and [22¢] the red highlighted region indicates the segmented plastic pipe, which
is the primary object of interest.
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6 CONCLUSION

The major contribution of this work lies in the dataset and, above all, the simulation
environment, which enables the simulation of different types of sonar and various structu-
res. This work successfully addressed the challenge of 3D reconstruction from ambiguous
sonar imagery by developing and validating a deep learning-based methodology for es-
timating elevation angles. To achieve this, a high-fidelity simulation environment was
created in HoloOcean to mirror a physical test tank. This environment facilitated the
development of the Synthetic Enclosed Echoes (SEE) dataset, a core contribution that fe-
atures a diverse collection of annotated synthetic sonar images. The final component was
the ElevateNET-R, a learning-based model adapted from an existing architecture into a
regression framework to predict the per-pixel elevation angle from a single sonar image.

The proposed ElevateNET-R model was evaluated and validated against its objecti-
ves. In quantitative comparisons with methods from the literature—including a classical
planar assumption, Neusis [28], and the original ElevateNet [4]], the proposed approach
consistently demonstrated superior reconstruction quality. Furthermore, the methodo-
logy’s ability to generalize from simulation to the real world was confirmed through a
sim-to-real experiment. The model, trained exclusively on synthetic data, successfully
performed inference and 3D reconstruction on real-world data collected with a BlueView
P900 sonar, validating the effectiveness of the approach.

The primary contributions of this work are twofold: the creation of a comprehensive
and expandable dataset with its simulation environment, and the successful application
of a regression-based network for sonar ambiguity correction. As a next step, the SEE
dataset and the simulation environment will be publicly released to foster further research
and collaboration within the underwater robotics community. This will enable more ex-
tensive studies and support the development of more robust and generalized methods for

processing diverse sonar data in the future.
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